LMGP - Recherche Equipe NanoMAT

Transparent Conductive Materials

TCO type n : ;In this axis we focus on the deposition of Indium-free n type TCOs by using MOCVD and (S)ALD. Namely, we have developed in the last years new SALD processes for the deposition of tin oxide (SnOx) based n type TCOs, and Zinc oxide based n Type TCOs (both intrinsic ZnO with post deposition optimisation and doped ZnO. We are currently further optimizing this materials using new precursors and processes aiming at low temperature processing (< 300 °C) and high deposition rates (compatible with PV production). Finally, we also explore the combination of our n type TCOs with AgNWs to develop composites with superior performance. Regarding MOCVD, current developments focus on controlling deposition conditions for thin films of perovskite phases as Mott conductors (SrVO₃, SrNbO₃).
 

Type p TCO : This area of research focuses on the development of new deposition processes and optimisation of the properties of well-known p-type TCOs such as NiO and Cu₂O, mainly through SALD, and on research aimed at optimising through MOCVD alternative phases such as Delafossite phases (non-stoichiometric CuCrO₂) or through nanocomposite approaches combining thin films and nanowires networks for transparent and flexible applications. In order to improve the different properties of the p-type TCOs films our approaches is based on optimizing the deposition condition by controlling the microstructures, the compositions and doping to ultimately leading to integration into devices (transparent pn junctions, sensors, Hole transport layer in solar cells, …)
 

Metal nanowire networks : The metal nanowires (MNW) research area aims to develop and better understand the physical properties of metal nanowire networks, their stability, and their integration into devices primarily related to energy or health. We are particularly interested in better understanding the physical properties (mainly optical and electrical) as a function of the chemical nature of MNWs, their size, and the density of the network. These studies are conducted experimentally and through physical modeling. We also seek to thoroughly study the stability of these networks when subjected to thermal, electrical, or environmental stresses. Work is being done to integrate them into devices mainly related to applications in the fields of transparent heating films, low-emissivity films, and transparent electrodes for photovoltaics or electrochromism, for example. <

Non permanent staff

Lilou Boutarin (PhD, MNW)
Maria Del Mar Rodriguez Robles (PhD, MNW)
Sophie Depriester (PhD, MNW)
Shagun Maurya (PhD, MNW)
Darzhan Sadvokassova (PhD, MNW)
Sebastian Schumacher (PhD, MNW)
Buyun Zheng (PhD, MNW)
Johnny Azzi (PhD, TCO n)
Maxime Hanauer ( PhD , TCO p)
 

10 selected papers


[1] Viet Huong Nguyen et al. Materials Horizons,  2018. 5, 715-726   DOI: 10.1039/C8MH00402A
Electron tunneling through grain boundaries in transparent conductive oxides and implications for electrical conductivity

[2] Viet Huong Nguyen,et al.Dalton Transactions 2022, 51, 9278-9290 
*Atmospheric atomic layer deposition of SnO2 thin films with Tin(II) acetylacetonate and water

[3]  S. Maurya, L. Labeyrie, K. Zimny, M. Del Mar Rodriguez-Robles, B. Zheng, S. Schumacher, D. Muñoz-Rojas, D. Bellet and M. Tréguer-Delapierre ", Advances in Physics: X, 10 (2025) 2573818, DOI: 10.1080/23746149.2025.2573818
"Recent advances in Metallic Nanowire based Transparent Electrodes: From Chemistry of Metallic Nanowires to Physics behind the conducting networks"

[4] L. Bardet et al. et al. ACS Applied Nano Materials 6, 15234 (2023)
SnO2-Coated Silver Nanowire Networks as a Physical Model Describing Their Reversible Domain under Electrical Stress for Stable Transparent Electrode Application

[5] A. Khan et al. ACS Appl. Mater. Interfaces 16, 10439 (2024)
Silver Nanowires-based Transparent Electrodes for V2O5 Thin Films with Electrochromic Properties

[6] A. Krizan et al. ACS Nano 18, 34902 (2024)
Oxidation-resistant Cu-based nanowire transparent electrodes activated by an exothermic reducing reaction

[7] Y. Chernukha et al. ACS Omega 10 (2025) 2573818
In situ multiscale investigation of capillary force-induced cold-welding of silver nanowire networks

[8] - J. Resende et al.Journal of Physical Chemistry C, 123 issue14 (2019) 8663−8670  ; 10.1021/acs.jpcc.9b00408
Resilience of Cuprous Oxide under Oxidizing Thermal Treatments via Magnesium Doping

[9] - L. Bottiglieri et al. Mater. Adv., 2 (2021) 4721,10.1039/D1MA00156F
Out of stoichiometry CuCrO2 films as a promising p-type TCO for transparent electronics

[10] L Bottiglieri et al., ACS Applied Electronic Materials 4 (12) (2022), 5847-5858, https://doi.org/10.1021/acsaelm.2c01025
n-ZnO/Out-of-Stoichiometry p-CuCrO2 Diodes for Efficient and Low-Cost Transparent Electronic Applications", 


Review articles


[1] Transparent Heaters: A Review   
Dorina T. Papanastasiou, Amélie Schultheiss, David Muñoz-Rojas*, Caroline Celle, Alexandre Carella, Jean-Pierre Simonato*, Daniel Bellet*  
Adv. Func. Mater, 2020, 30(21), 1910225.

[2] V.H. Nguyen et al. Small 18, 2106006 (2022)
Advances in flexible metallic transparent electrodes 

[3] A. Sekkat et al. Journal of Materials Chemistry A 12, 25600 (2024)
Towards Enhanced Transparent Nanocomposites based on Metallic Nanowire Networks coated with Metal Oxides: A Brief Review

[4] S. Maurya et al. Avances in Physics: X 10 (1), 2573818 (2025)
Recent advances in Metallic Nanowire based Transparent Electrodes: From Chemistry of Metallic Nanowires to Physics behind the conducting networks 

 

Projects

ANR LES MESNINES (2023-2027, partenaire)
Type :
Agence Nationale de la Recherche, appel PRC
Titre : Electrodes transparentes métalliques à base de nanofils d’Ag protégés par des nitrures ou oxynitrures par des procédés de dépôt chimique ALD
Partners : SIMAP (Grenoble), LTM (Grenoble)

ANR EC-LIPSE (2024-2028, partenaire)
Type :
Agence Nationale de la Recherche, appel PRC 
Titre : Eco-design of optically active multi-layered systems by full-printed approach: materials-process correlations
Partners : LGP2 (Grenoble), ICMCB (Bordeaux)

PROJECT RESILEX (2022-2026, partenaire)
Type :
HORIZON-CL4-2021-RESILIENCE-01-07
Titre : Smarter and Eco Innovation building blocks for advanced PV Module

ANR Nanocomposite (2023-2027, coordinateur)
Type : ANR PRC
Titre: Nanocomposites innovants comme films semiconducteurs de type P flexibles et transparents – nanocomposite
Partners :  LMGP, SIMAP, CROMA

PEPR TASE  avec 2 projets  2023-2028 
Type : France 2030 

  • Titre IOTA - InnOvative Tandem Architectures 
  • Partners :  C2N, CEA-INES, INL, LAAS, LPICM, GEEPS, IMS, CEA SYMMES, CRHEA, FOTON, ILV, LMGP, FEMTO-ST, iCube
  • Titre : SOLSTICE - New momentum in SOLving the indium and Silver consumption issues for a sustainable Terawatt-scale Industrialization of high efficiency solar CElls 
  • Partners : CEA-INES, LMGP, CRISMAT, ISCR, IJL, iCube, ICMCB, CROMA,

National & international collaborations

  • SIMAP, Grenoble
  • SyMMES, Grenoble
  • ICMCB, Bordeaux
  • Laboratoire de chimie (ENS) Lyon
  • IEMN Lille 
  • INES, Bourget du Lac
  • CROMA, Grenoble
  • iCube, Strasbourg
  • IJL, Nancy,
  • CRISMAT, Caen
  • ISCR, Rennes
 
  • Université de Liège, Belgique
  • Université d’Ankara, Turquie
  • Université nouvelle de Lisbonne, Portugal