Aller au menu Aller au contenu
Synthèse et propriétés de monocristaux, de poudres, films minces ou hétérostructures

Etudes à l'interface avec la matière biologique

> LMGP_Présentation > LMGP_Actualites

SEMINAIRE LMGP - 28.04.2020 - Damir PINEK

Publié le 21 avril 2020
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
Colloque / Séminaire 28 avril 2020
14 h - visio-conférence

Shedding light on the electronic structure of Mn+1AXn nanolamellar carbides



PhD student at LMGP


The Mn+1AXn, or “MAX” phases, where M is an early transition metal, A belongs to group 13-16 and X is C or N, are a class of nano-layered compounds that triggered strong interest from the material science community for their unique combinations of metal-like and ceramic-like properties [1]. They are also precursors for MXENES, a whole family of two dimensional carbides [2], notably sought for energy storage developments [3].

Despite MAX phases’ attractiveness regarding a wide range of applications, some of their fundamental features are yet to be fully understood [4], notably regarding the relationship between their electronic structure, anisotropies and transport properties.

In this talk we present the methodology followed to experimentally determine the morphology of the electronic states (e.g. Band structure and Fermi surface) of 3 phases: Cr2AlC, V2AlC and Ti3SiC2 [5-8]. Angle resolved photoemission spectroscopy (ARPES) experiments carried out on single crystals grown in Grenoble were consistently compared with the output of density functional theory (DFT) calculations. Then, we will go on with the description of a rigid band model that describes the electronic structure of all M2AC, or “211” MAX phases [9,10]. Finally, we will briefly introducing the magnetic derivatives of MAX phases: iMAX and 4473 phases [11,12].

[1] M. Sokol, V. Natu, S. Kota, and M. W. Barsoum, Trends Chem. 1, 210 (2019).
M. Naguib et al., Adv. Mater. 23, 4248 (2011).

[3] B. Anasori, M.R. Lukatskaya and Y. Gogotsi, Nature Review Materials 2, 16098 (2017).
[4] T. Ouisse, L. Shi, B.A. Piot, B. Hackens, V. Mauchamp and D. Chaussende, Phys. Rev. B 92, 045133 (2015).
[5] T. Ito, D. Pinek, T. Fujita, M. Nakatake, S. Ideta, K. Tanaka, T. Ouisse, Physical Review B 96 (19), 195168 (2017).
[6] T. Ouisse, D.Pinek, M.W. Barsoum, Ceramics International 45 (17), 22956-22960, (2019)
[7] D. Pinek, T. Ito, M. Ikemoto, M. Nakatake, T. Ouisse, Physical Review B 98 (3), 035120 (2018).
[8] D. Pinek et.Al, to be submitted very soon
[9] M. H. Cohen and V. Heine, Adv. Phys. 7, 395 (1958).

[10] D. Pinek, T. Ito et al., Phys. Rev. B 100, 075114 (2019).
[11] Q Tao, T Ouisse, D Pinek, O Chaix-Pluchery, F Wilhelm et.Al, Physical Review Materials 2, 114401 (2018).
A. Champagne, O. Chaix-Pluchery, T. Ouisse, D. Pinek, I. Gélard, L. Jouffret, M. Barbier, F. Wilhelm, Q. Tao, J. Lu, J. Rosen, M. W. Barsoum, and J.-C. Charlier, Phys. Rev. Materials 3, 053609 (2019).
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

mise à jour le 23 avril 2020

  • Tutelle CNRS
  • Tutelle Grenoble INP
Université Grenoble Alpes