Aller au menu Aller au contenu
Physico chemistry of solids, thin films, biotechnologies
Applications for micro & nano- technologies, energy, health ...

> Research > Research-NanoMAT

Paper by Maxime Barbier 2020

Published on November 3, 2020
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
Communique from October 13, 2020 to December 31, 2020

The paper "Insights into the elastic properties of RE-i-MAX phases and their potential exfoliation into two-dimensional RE-i-MXenes" has been published in Physical Review Materials

schematic structures

schematic structures

Here you will find the paper by Maxime Barbier

"The recent discovery of quaternary MAX phases with chemical in-plane order allowed the addition of nontraditional MAX phase elements, such as rare-earth elements. In the present study, first-principles calculations are performed to investigate the electronic structure, elastic and hardness response, and bonding strengths of the novel REiMAX phases with the formula (Mo2/3RE1/3)2AlC. The Voigt-Reuss-Hill bulk, shear, and Young's moduli are compared along the series of RE = Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu, and the global trend is found to depend on the unit cell volume. Nanoindentation experiments on Ho-based single crystals result in moduli that are within 10% of predicted values and a hardness of 10 GPa. The computation of the projected density of states, projected crystal orbital Hamilton population, and integrated projected crystal orbital Hamilton population, reveals that the bonding of Mo and RE atoms with the Al atoms are weaker than those with the C atoms, suggesting the exfoliation of REiMAX into two-dimensional REi-MXenes to be feasible. Such a possibility to form two-dimensional crystals is further confirmed by the computation of the exfoliation energies, which demonstrates the process to be easier as the RE atomic mass decreases."


A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

Date of update December 28, 2020

Université Grenoble Alpes