Aller au menu Aller au contenu
Synthèse et propriétés de monocristaux, de poudres, films minces ou hétérostructures

Etudes à l'interface avec la matière biologique

> LMGP_ Recherche > Nano

Publication de B. Chatmaneerungcharoen

Publié le 24 juin 2022
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
Communiqué du 24 juin 2022 au 31 août 2022

L'article intitulé "Synthesis of In-Plane Oriented Tin Sulfides by Organosulfur-Mediated Sulfurization of Ultrathin SnO2 Films" a été publié dans Chemistry of Materials.

CMChatmaneerungcharoen2022

CMChatmaneerungcharoen2022

Ici vous trouverez l'article de Bhobnibhit Chatmaneerungcharoen :
"Transition metal dichalcogenides (TMDs) have received great attention over the past decade due to their wide range of optoelectronic properties and intrinsic compatibility with ultimately downsized devices (as ultrathin or even 2D layers), making them desirable for next-generation technologies. To obtain TMDs with satisfying optoelectronic properties, very high process or annealing temperatures are generally applied (above 550 °C), requiring a dedicated growth substrate followed by a mechanical transfer of the TMD layer onto the target device. Hexagonal tin(IV) disulfide (SnS2) and orthorhombic tin(II) monosulfide (SnS) are another class of layered semiconducting metal chalcogenides displaying n-type and p-type conduction, respectively. Unlike early-transition-metal TMDs, highly crystalline SnS2 and SnS layers can be grown at relatively low temperatures (below 400 °C), which make them more suited for direct implementation on integrated circuits. In this article, we demonstrate the relevance of volatile and nontoxic liquid organosulfur compounds as a safe and convenient alternative to both elemental sulfur and H2S for producing either SnS2 or SnS ultrathin layers with good crystallinity. Between 300 and 400 °C, atomic layer deposited SnO2 is directly converted into 2H-SnS2 by using tert-butyl disulfide (TBDS). If tert-butylthiol (TBT) is used, the α-SnS phase is obtained. At 250 °C, TBDS converts α-SnS into SnS2, and the zip mechanism allowing this transformation is analyzed at the atomic scale by using super-resolved transmission electron microscopy."
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

mise à jour le 24 juin 2022

  • Tutelle CNRS
  • Tutelle Grenoble INP
Université Grenoble Alpes