DE LA RECHERCHE À L'INDUSTRIE

MATERIALS FOR NUCLEAR ENERGY: FISSION AND FUSION

PHYSICS BASED MODELLING OF THE BEHAVIOUR OF MATERIALS UNDER IRRADIATION

François WILLAIME (1) and Yves BRECHET (2)

(1) CEA, DEN, Service de Recherches de Métallurgie Physique, Gifsur-Yvette, France

(2) SIMAP, Grenoble INP & CEA, Gif-sur-Yvette, France

Mat4Energy, Grenoble, France | 16-18 June 2014

www.cea.fr

DE LA RECHERCHE À L'INDUSTRIE

PRESENT AND FUTURE NUCLEAR REACTORS

Present

Future

Fiss	Fusion		
Generation 2&3	Gen IV	ITER -> DEMO	
(Thermal neutrons)	(Fast neutrons)	(14 MeV neutrons)	
Coolant and moderator = pressurized water (PWR)	Coolant = liquid sodium (SFR)	plasma	
T= 300°C	550°C	T=550°C	

AGEING OF MATERIALS IN NUCLEAR REACTORS

MATERIALS UNDER IRRADIATION AND NUMERICAL SIMULATIONS

WHAT CHANGES IN THE PHYSICS OF MATERIALS UNDER IRRADIATION ?

System out of equilibrium

- Ballistic jumps vs thermally activated jumps
- Supersaturation of defects (vacancies and self-interstitials)

$$C_{v,i} \gg C_{v,i}^{eq}(T)$$

- vacancies ~ quench from high temperature
- self-interstitials become important since $C_i(t=0) = C_v(t=0)$

unlike at thermal equilibrium where $C_i^{eq}(T) \ll C_v^{eq}(T)$ since $H_i^f > H_v^f$

- Irradiation by neutrons: nuclear reactions induce changes in the chemical composition (transmutation) + production of He and H
 - Irradiation changes: structure, chemistry & transport
 - Inherently multiscale problem:
 - In size: from atoms to components
 - In time: from picoseconds to centuries
 - => Key role of numerical simulations

DE LA RECHERCHE À L'INDUSTR

Dimensional changes

J.A. Horak et al.(1961)

DE LA RECHERCHE À L'INDUSTR

cea

IRRADIATION CONDITIONS OF COMPONENTS IN NUCLEAR REACTORS

~ 550°C ~ 200 dpa

Generation IV (fast neutron reactors)

- ~10 appm He/dpa
- ~ 45 appm H/dpa

Fusion devices

USING IONS TO MIMIC THE EFFECT OF NEUTRONS

The Jannus-Saclay triple beam facility

Advantages:

- Faster (~10 dpa per day)
- Cost
- Well controlled conditions
- Samples are not activated

Limitations:

- Implantation depth (~1µm)
- Mechanical tests
- ion/neutron transferability

MULTISCALE ASPECT OF MATERIALS UNDER IRRADIATION

DE LA RECHERCHE À L'INDUSTRI

MULTISCALE MODELLING TOOLBOX

DE LA RECHERCHE À L'INDUSTRIE

AB INITIO MD SIMULATION OF THRESHOLD DISPLACEMENT ENERGIES IN SIC

t = 0.006 ps

t = 1 ps

G. Lucas and L. Pizzagalli, PRB (2005)

MD SIMULATION OF DISPLACEMENT CASCADES

Movie: courtesy of A. Calder and D. Bacon, The University of Liverpool, UK

- The real number of displaced atoms that have moved from their lattice sites can be ~ 10-100 times higher
- About 50% of the defects are clustered

 major difference between irradiation by electrons and by neutrons or high energy
 ions
- Structure of cascades: vacancies at the center and interstitials at the periphery

DE LA RECHERCHE À L'INDUSTRIE

Structure of Interstitial clusters in Fe revisited by DFT calculations

MATERIALS ISSUES IN PRESENT REACTORS (FISSION – PWR – GEN 2&3)

MATERIALS ISSUES IN NUCLEAR REACTOR COMPONENTS

Ageing of nuclear power plants

Life limiting component => Pressure Vessel (irreplaceable)

Availability limiting components => Internals (replaceable)

Fuel consumption limiting component
=> Fuel cladding (consumable)

CONSUMABLES: FUEL CLADDINGS

DE LA RECHERCHE À L'INDUSTRI

Cea

GROWTH OF ZIRCONIUM FUEL CLADDINGS

DE LA RECHERCHE À L'INDUSTRI

GROWTH OF ZR SINGLE CRYSTALS

Carpenter (1981)

Cea

POINT DEFECTS IN THE HCP STRUCTURE

• <u>Vacancy</u> : 2 migration paths

Basal migration

Non-basal migration

⇒ May yield to diffusion anisotropy

 <u>Self-interstitials</u>: 6 configurations with similar formation energies according to DFT calculations

Diffusion Anisotropy Model for irradiation growth

→ Based on the hypothesis of Differential Anisotropy Diffusion of point defects

- vacancy: migration selon c
- Self-interstitials: migration plan basal
- \rightarrow Problem: not compatible with DFT data (at T=0K)
- Role of loops ?

REPLACEABLE: INTERNAL STRUCTURES

Radiation effects on austenitic stainless steels

Consequences on mechanical properties and sensitivity to IASCC

Radiation effects on austenitic stainless steels

Microstructural evolutions

- Evolution of the initial dislocations network
- Irradiation defects: black dots, Frank loops, cavities and precipitates
- Formation of « Clear band » (under deformation)

Modification of mechanical properties

- Hardening (increase of yield stress)
- Loss of ductility
 - Softening (yield drop + localization of deformation in « cleared channels)
 - Decrease of fracture toughness

DEFECT DISLOCATION INTERACTION

T. Nogaret et al. (2007) INPG & CEA

COLLECTIVE BEHAVIOUR OF DISLOCATIONS

Clear band formation [Sharp, 67]

Dislocation dynamics

T. Nogaret et al. (2007) INPG & CEA

IRREPLACEABLE: VESSEL

REACTOR PRESSURE VESSELS

- Dimensions:
 10x5 m, thickness = 23 cm
- Ferritic steel composition: Solutes (%):

С	Mn	Ni	Мо	Cr	Si
<0.2	1.4	0.6	0.5	<0.25	0.2

impurities (ppm):

Р	S	Cu	Со
< 80	< 80	< 800	< 300

Operating conditions: 150 bar, 300°C


```
DE LA RECHERCHE À L'INDUSTRIE
```

Hardening and embrittlement

- Irradiation hardening induces a shift in ductile to brittle transition temperature (DBTT)
- DBTT increases with Cu content

ORIGIN OF IRRADIATION HARDENING OF RPV STEELS

Interaction of dislocations with:

- Solute rich clusters

« matrix » dammage (vacancy and interstitial clusters)

- Probably combination of both
- Open question: « visible » defects cannot account quantitatively for observed hardening

MATERIALS ISSUES IN FUTURE REACTORS (FISSION GEN IV AND FUSION)

DE LA RECHERCHE À L'INDUSTRI

Materials Environment Comparaison with classical PWR

	Fission	Fission	Fusion
	(Gen. I/II) PWR…	(Gen. IV)	(Demo)
temperature max	<300°C	500-1000°C	550-1000°C
Irradiation dose max	~50 dpa	~30-200 dpa	~150 dpa
transmutation concentration He	~0.1 appm	~3-10 appm	~1500 appm (~10000 appm for SiC)
Heat extracting fluids	H ₂ O (PWR: pression 155 bars)	He, H ₂ O, Pb- Bi, Na	He, Pb-Li, Li

No requirement on pressure

DE LA RECHERCHE À L'INDUSTRIE

New reactors : Gen IV et Fusion Comparison with classical PWR

INNOVATIVE FUEL CLADDING FOR SFR

DE LA RECHERCHE À L'INDUSTR

SWELLING OF SFR FUEL CLADDING

DE LA RECHERCHE À L'INDUSTRI

SWELLING OF AUSTENITIC STEELS

SA 316 Phénix 600°C

SWELLING OF AUSTENITIC AND FERRITIC/MARTENSITIC STEELS

Global behaviour of 15/15Ti cladding & F/M wrapper tubes : max clad diametral deformation & max cross flat increase of W/T

OXIDE DISPERSION STRENGHENED (ODS) STEELS

Tomographic Atom Probe,

Miller (2004)

FUSION

Innovative fuel cladding

ITER: A MATERIALS PROBLEM...

« It's a wonderful idea to put the sun in a box...except we don't know how to make the box ! » (Sébastien Balibar)

- Plasma facing materials: high temperature, highly reactive
- Materials for the divertor: high erosion
- Structural Materials: high irradiation doses (embrittlement, swelling...)

A real challenge for scientists and engineers

SPECIFICITY OF FUSION NEUTRONS

• D + T => ⁴He + n (14,1 MeV)

• Helium embrittlement

FATE OF HELIUM IN ODS STEELS

Dual Beam irradiation/implantation(Jannus) – 425°C, 40 dpa, 80 appm He/dpa K3-ODS 16Cr-4.5 AI-0.3 Ti-2W-0.37 Y2O3

Hsiung et al., J. Nucl. Mater. 409 (2011) 72 ;

Materials for nuclear energy:

- A requirement to built safe and sustainable devices, today and tomorrow
- Limiting factor for innovative options and to make dreams come true
- A scientific and technological challenge: multiscale modelling is at the heart of the problem

Caveats:

- Multiscale modelling platform <u>should not hide the missing fundamental</u> <u>blocks</u>
- Understanding the missing blocks requires studies on model materials
- Only if we admit that, we can hope to go beyond qualification toward real materials development, in a realistic manner, combining experiments and modelling