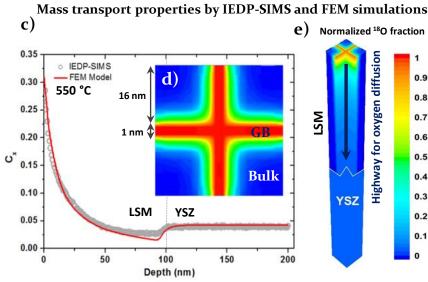
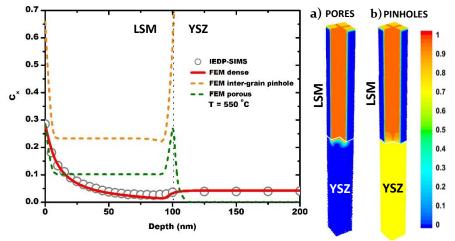

Evaluation of the Mass Transport Properties of La_{0.8}Sr_{0.2}MnO_{3+δ} nanostructures by Finite Element Method (FEM) Simulations


D. Pla^{1,2}, A. Morata¹, A. M. Saranya¹, A. Cavallaro³, J. Canales-Vázquez⁴, F. Chiabrera¹, J. A. Kilner³, M. Burriel², and A. Tarancón¹ ¹IREC, Catalonia Institute for Energy Research, Spain. ² Université Grenoble Alpes, CNRS, LMGP, France. ³ Imperial College London, London, UK. ⁴ Universidad de Castilla La Mancha, Spain

NANOENGINEERING THIN FILMS: nanostructures with a high density of grain boundaries (GBs)

 $La_{0.8}Sr_{0.2}MnO_{3\pm\delta}$ (LSM) dense film deposited by PLD on polycrystalline YSZ films


(a) The high density of vertically aligned GBs leads to a high concentration of strain-induced defects.

(b) Model proposed for the FEM simulations.

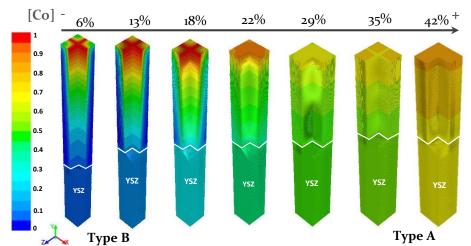
(c) Normalized ¹⁸O isotopic fraction and fitted solution by FEM at 550°C. (d) Top view and (e) cross section of the isotopic fraction map by FEM.

EFFECT OF DEFECTS in diffusion profiles

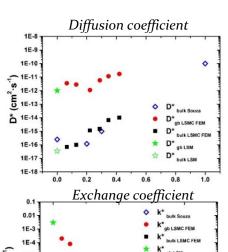
Short circuit paths down nanopores or inter-grain pinholes

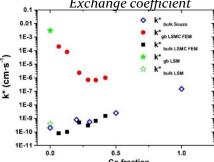
Differences in the isotope fraction profiles at 550°C due to short circuit paths: (a) porosity in the place of GB and (b) 1x1nm² squared inter-grain pinholes inside GB. The presence of defects in the LSM dense thin films is discarded

GEOMETRIC EFFECTS

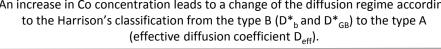

Variation of the grain size and the grain boundary width (according to the grain size study from the structural characterization)

	6% [C	o] LSMC	
	D* _b (cm ² ·s ⁻¹)	D* _{GB} (cm ² ·s ⁻¹)	k* _{GB} (cm·s ⁻¹)
Grain wid	th (nm) and 1 r	ım GB	
15	3.5x10 ⁻¹⁷	3.9x10 ⁻¹²	2.6x10 ⁻⁴
21	7.0x10 ⁻¹⁷	3.5x10 ⁻¹²	2.0x10 ⁻⁴
27	1.1x10 ⁻¹⁶	3.2x10 ⁻¹²	1.3x10 ⁻⁴
GB width	(nm) and 21 nr	n grain	
0.5	9.8x10 ⁻¹⁷	4.3x10 ⁻¹²	3.0x10 ⁻⁴
1.5	5.8x10 ⁻¹⁷	2.1x10 ⁻¹²	1.9x10 ⁻⁴
	13% [0	Co] LSMC	
Grain wid	th (nm) and 1 r	ım GB	
18	5.5x10 ⁻¹⁷	2.9x10 ⁻¹²	8.2x10 ⁻⁵
25	9.8x10 ⁻¹⁷	2.8x10 ⁻¹²	8.0x10 ⁻⁵
32	1.7x10 ⁻¹⁶	2.6x10 ⁻¹²	7.9x10 ⁻⁵
GB width	(nm) and 25 nr	n grain	
0.5	1.9x10 ⁻¹⁶	2.7x10 ⁻¹²	1.0x10 ⁻⁴
1.5	8.0x10 ⁻¹⁷	2.1x10 ⁻¹²	7.9x10 ⁻⁵


- ✓ The variation of the grain width mainly affects D_b^* and D_{GB}^* .
- The k*_{GB} value is much less sensitive.
- Changes in the k*_b value are insignificants.
- The effect of the grain boundary width modifies in the same order the k^*_{GB} , D^*_{GB} and D*_h due to the decisive influence of GBs and their interaction with the bulk.


DOPANT EFFECT : $La_{o.8}Sr_{o.2}Mn_{1-x}Co_xO_{3\pm\delta}(LSMC)$

Isotopic fraction maps for LSMC/YSZ calculated by FEM



An increase in Co concentration leads to a change of the diffusion regime according to the Harrison's classification from the type B (D^*_{b} and D^*_{GB}) to the type A

- Large increase in both D*, and D_{GR}^* for %Co > 20%, probably related to an increase of the Vo
- The increase of V_{0}^{\cdots} is similar in the grain and GBs.
- K*, increases with Co content, probably related to an increase of the V_O^{..} in the grain.
- k^*_{GB} decreases with %Co up to 22%. It might be due to a higher E_a for O₂ adsorption in LSMC compared to LSM.
- The O²⁻ incorporation probably is enhanced due to high density of GBs in the nanostructure.

