Evaluation of the Mass Transport Properties of La_{0.8}Sr_{0.2}MnO_{3+δ} nanostructures by Finite Element Method (FEM) Simulations D. Pla^{1,2}, A. Morata¹, A. M. Saranya¹, A. Cavallaro³, J. Canales-Vázquez⁴, F. Chiabrera¹, J. A. Kilner³, M. Burriel², and A. Tarancón¹ ¹IREC, Catalonia Institute for Energy Research, Spain. ² Université Grenoble Alpes, CNRS, LMGP, France. ³ Imperial College London, London, UK. ⁴ Universidad de Castilla La Mancha, Spain NANOENGINEERING THIN FILMS: nanostructures with a high density of grain boundaries (GBs) $La_{0.8}Sr_{0.2}MnO_{3\pm\delta}$ (LSM) dense film deposited by PLD on polycrystalline YSZ films (a) The high density of vertically aligned GBs leads to a high concentration of strain-induced defects. (b) Model proposed for the FEM simulations. (c) Normalized ¹⁸O isotopic fraction and fitted solution by FEM at 550°C. (d) Top view and (e) cross section of the isotopic fraction map by FEM. ## **EFFECT OF DEFECTS in diffusion profiles** Short circuit paths down nanopores or inter-grain pinholes Differences in the isotope fraction profiles at 550°C due to short circuit paths: (a) porosity in the place of GB and (b) 1x1nm² squared inter-grain pinholes inside GB. The presence of defects in the LSM dense thin films is discarded **GEOMETRIC EFFECTS** Variation of the grain size and the grain boundary width (according to the grain size study from the structural characterization) | | 6% [C | o] LSMC | | |-----------|---|--|--| | | D* _b (cm ² ·s ⁻¹) | D* _{GB} (cm ² ·s ⁻¹) | k* _{GB} (cm·s ⁻¹) | | Grain wid | th (nm) and 1 r | ım GB | | | 15 | 3.5x10 ⁻¹⁷ | 3.9x10 ⁻¹² | 2.6x10 ⁻⁴ | | 21 | 7.0x10 ⁻¹⁷ | 3.5x10 ⁻¹² | 2.0x10 ⁻⁴ | | 27 | 1.1x10 ⁻¹⁶ | 3.2x10 ⁻¹² | 1.3x10 ⁻⁴ | | GB width | (nm) and 21 nr | n grain | | | 0.5 | 9.8x10 ⁻¹⁷ | 4.3x10 ⁻¹² | 3.0x10 ⁻⁴ | | 1.5 | 5.8x10 ⁻¹⁷ | 2.1x10 ⁻¹² | 1.9x10 ⁻⁴ | | | 13% [0 | Co] LSMC | | | Grain wid | th (nm) and 1 r | ım GB | | | 18 | 5.5x10 ⁻¹⁷ | 2.9x10 ⁻¹² | 8.2x10 ⁻⁵ | | 25 | 9.8x10 ⁻¹⁷ | 2.8x10 ⁻¹² | 8.0x10 ⁻⁵ | | 32 | 1.7x10 ⁻¹⁶ | 2.6x10 ⁻¹² | 7.9x10 ⁻⁵ | | GB width | (nm) and 25 nr | n grain | | | 0.5 | 1.9x10 ⁻¹⁶ | 2.7x10 ⁻¹² | 1.0x10 ⁻⁴ | | 1.5 | 8.0x10 ⁻¹⁷ | 2.1x10 ⁻¹² | 7.9x10 ⁻⁵ | - ✓ The variation of the grain width mainly affects D_b^* and D_{GB}^* . - The k*_{GB} value is much less sensitive. - Changes in the k*_b value are insignificants. - The effect of the grain boundary width modifies in the same order the k^*_{GB} , D^*_{GB} and D*_h due to the decisive influence of GBs and their interaction with the bulk. ## DOPANT EFFECT : $La_{o.8}Sr_{o.2}Mn_{1-x}Co_xO_{3\pm\delta}(LSMC)$ Isotopic fraction maps for LSMC/YSZ calculated by FEM An increase in Co concentration leads to a change of the diffusion regime according to the Harrison's classification from the type B (D^*_{b} and D^*_{GB}) to the type A - Large increase in both D*, and D_{GR}^* for %Co > 20%, probably related to an increase of the Vo - The increase of V_{0}^{\cdots} is similar in the grain and GBs. - K*, increases with Co content, probably related to an increase of the V_O^{..} in the grain. - k^*_{GB} decreases with %Co up to 22%. It might be due to a higher E_a for O₂ adsorption in LSMC compared to LSM. - The O²⁻ incorporation probably is enhanced due to high density of GBs in the nanostructure.