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Introduction 

Multiferroic materials have attracted much interest during the recent years. Our study is 

devoted to a prototypic system: yttrium manganite. In particular, we focus on the ferroelectric 

properties in bulk and in thin film forms. Yttrium manganite belongs to the class of ABO3 

compounds. Most theoretical studies of ferroelectricity to date were concentrated on cubic 

perovskite ABO3. Yttrium manganite is hexagonal and is an improper ferroelectric. We were 

interested to study theoretically and experimentally how these two features behave in thin film 

form. Our study is organized as follows. 

In the first two chapters, we overview the general framework of this thesis. In Chapter 1, we 

present the class of multifunctional ABO3 compounds potentially attractive for wide 

applications and the most characteristic phenomena: the magnetoelectric effect, 

multiferroicity and ferroelectricity. Further on, we introduce hexagonal yttrium manganite and 

emphasize on improper ferroelectricity. In Chapter 2, we describe our used theoretical (first-

principles calculations) and experimental (Raman spectroscopy, Metal organic chemical 

vapour deposition and X-Ray diffraction) techniques and provide the related technical details. 

In the next chapters, we report our various theoretical and experimental results for YMnO3 in 

bulk and thin film form. 

In Chapter 3, we report and discuss the structural properties computed from first principles of 

both high-temperature paraelectric and ground-state ferroelectric phases of bulk YMnO3 in 

comparison to other theoretical and experimental data available in the literature. 

In Chapter 4, we present never previously reported dynamical properties computed from first 

principles of paraelectric and ferroelectric bulk YMnO3. We extend this theoretical study with 
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our own experimentally measured Raman spectra of ferroelectric YMnO3 single crystal. The 

crystal was found to be miscut, but our computed angular dispersion curves explained the 

obtained experimental results. All our theoretical and experimental data are discussed in 

comparison to other theoretical and experimental data available in the literature. 

On one hand, Chapter 3 and Chapter 4 count as the important individual parts to supplement 

the knowledge in the structural and dynamical properties of hexagonal YMnO3. One the other 

hand, these parts are complementary and at the same the necessary parts in order to build a 

model based on first-principles calculations for epitaxial thin films of YMnO3 presented in 

Chapter 5, which opened the possibilities to study the role of epitaxial strain on hexagonal 

perovskites and the role of electrical boundary conditions on improper ferroelectrics. 

In Chapter 6, we report the experimental study of structural and dynamical properties of 

YMnO3 epitaxial thin films grown by MOCVD. The obtained results for films are discussed 

in comparison to those for bulk reported in Chapter 3 and Chapter 4. The experimental results 

are understood and explained using the first-principles model presented in Chapter 5. 
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  Chapter 1

 

Magnetoelectric effect, multiferroism 

and ferroelectricity in ABO3 compounds 

The present chapter overviews the general framework of this thesis. It is divided into five 

sections. The first one introduces the ABO3 oxide compounds and their incredible variety of 

functional properties. The next three sections present the main concepts of the 

magnetoelectric effect, the class of multiferroic materials and the ferroelectricity. The last 

section is devoted to yttrium manganite (YMnO3), which is one of the most intensively 

studied hexagonal multiferroics and is at the center of this thesis. 

1.1 Multifunctional ABO3 compounds 

The ABO3 oxide compounds mainly crystallize into a simple perovskite structure (from the 

mineral perovskite CaTiO3). The ideal perovskite structure is a cubic structure with the space 

group 3  (221)Pm m  and contains five atoms in a unit cell with the A atom at the corner of the 

cube, the B atom at the center and the O atoms are located at the center of each face 

(Figure 1.1). The oxygen atoms form an octahedron with B atom at the center. 
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12 

 

Figure 1.1 Structure of the ideal cubic perovskite. 

The A and B sites can support metal cations with a wide range of sizes and valences, which 

causes a variety of different orderings and physical phenomena (ferroelectricity, 

superconductivity, ferromagnetism,…) (Figure 1.2). 

 

 

Figure 1.2 ABO3 perovskites and related layered compounds with a broad spectrum of 

functional properties (taken from Ref. [1]). 
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Thanks to their similar structure, ABO3 compounds can be easily combined in various type of 

nanostructures. The most common configurations are multilayers and thin films grown on a 

substrate. The ability to control the growth of oxides on the atomic scale opened the 

possibilities to fabricate the high-quality heterostructures leading to undiscovered field of 

properties. As illustrated in Figure 1.3, creating interfaces between different compounds one 

can expect not only to combine or amplify the properties of the perovskite compounds, but to 

act on various degrees of freedom (lattice, spin, charge, orbitals) through various effects 

(epitaxial strain, charge transfer at the interface, symmetry breaking…). For instance, a 

magnetoelectric coupling between electrical polarization and magnetization was constructed 

in heterostructures consisting of piezoelectric and magnetostrictive materials. Through the 

mechanical coupling, the magnetic field induces strain in the magnetostrictive material and 

propagates into the piezoelectric layer generating an electrical response. 

 

 

Figure 1.3 The interactions of oxides at the interface between their charge, orbital, spin and 

lattice degrees of freedom (taken from Ref. [1]). 

te
l-0

08
70

83
6,

 v
er

si
on

 1
 - 

8 
O

ct
 2

01
3



14 

The stability condition of the ideal cubic perovskite structure depends on the radii of A, B and 

O atoms controlled by the Goldschmidt tolerance factor t: 

,
2

A O

B O

R R
t

R R
                                                     (1.1) 

where AR , BR  and OR  are the ionic radii of A, B and O atoms in the ABO3 structure 

(see Figure 1.1), respectively. 

For the ideal cubic structure, the tolerance factor 1t  (Figure 1.4). The ionic radii AR , BR  

and OR  are such that all the anions (O atoms) just touch the cations (A and B atoms). When 

( ) 2( )A O B OR R R R , the tolerance factor is 1t  and the B atom is too small for the 

oxygen octahedron meaning that the B atom has the freedom to move. These perovskites tend 

to be B-type ferroelectrics as a small polar distortion is developed. When 

( ) 2( )A O B OR R R R , the tolerance factor is 1t  and this time the A atom is too small 

for the structure and cannot effectively bond with neighboring O atoms. This leads to phases 

with tilts of the oxygen octahedra or A-type driven ferroelectricity. The structures with the 

tolerance factor 1 ( )A Bt R R  are far from ideal perovskite structure that becomes 

unfavored compared to hexagonal structures (Figure 1.5). 

 

 

a) b) 

Figure 1.4 Lattice parameter a in terms of A and B atoms ionic radii: AO (a) and BO (b) 

planes of cubic perovskite structure shown in Figure 1.1. Tolerance factor 1t . 
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15 

 

Figure 1.5 Structure of the hexagonal perovskite YMnO3 (space group: P63/mmc). 

 

A atom AR (Å) [2] Tolerance 

Er 0.95 0.75 

Gd 0.94 0.74 

Tb 0.92 0.74 

Dy 0.91 0.73 

Sc 0.75 0.68 

In 0.80 0.70 

Ho 0.89 0.73 

Er 0.89 0.73 

Tm 0.88 0.72 

Yb 0.86 0.72 

Lu 0.86 0.72 

Y 0.90 0.73 

Table 1.1 Tolerance factor t for hexagonal manganites RMnO3 with R = A atom. The ionic 

radius of Mn atom (B atom) and O atoms are 0.83BR Å and 1.27OR Å taken from 

Ref. [2], respectively. 
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The rare-earth manganites belongs to the family of ABO3 compounds through a chemical 

formula RMnO3, where A = R is a trivalent rare earth ion and B = Mn is a trivalent 

manganese ion. As shown in Table 1.1, the compounds of this family have a small tolerance 

factor 1t  and are at the tolerance factor limit. 

On the one hand, the the rare-earth manganites with the largest tolerance factor meaning with 

larger A cations (Eu, Gd, Tb, Dy) prefer to crystallize into the most common distorted 

perovskite-type orthorhombic phase. 

On the other hand, the rare-earth manganites with a smaller tolerance factor meaning with 

smaller A cations (Sc, In, Ho, Er, Tm, Yb, Lu), including YMnO3 studied in this work, 

crystallize into the hexagonal P63cm phase. 

However, since the deviation in tolerance factors of the rare-earth manganites is not broad, the 

orthorhombic manganites can be stabilized into the hexagonal phase and vice versa. 

A magnetoelectric effect occurring in some ABO3 compounds as a results of the electric and 

magnetic orderings coupling is presented in the next section. 

1.2 Magnetoelectric effect 

The coupling between the electric polarization P and a magnetic field H or between 

magnetization M and an a electric field E is called a magnetoelectric (ME) effect. 

The free energy F in terms of electric and magnetic field of magnetoelectric material is 

expended as follows [3]: 

0

0 0

( , )

1 1

2 2

1 1
...,

2 2

S S

i i i i

ij i j ij i j ij i j

ijk i j k ijk i j k

F F P E M H

є є E E H H E H

E H H H E E

E H

                             (1.2) 
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where, S

iP  and S

iM  are the spontaneous polarization and magnetization, respectively, in 

direction i,  and  are the dielectric permittivity and magnetic permeability,  is the linear 

magnetoelectric susceptibility tensor,  and  are the high order terms parameterizing the 

nonlinear ME effect. 

The electric polarization 
iP  along a given direction i is obtained after differentiating the 

energy with respect to the electric field in direction i: 

0

,

1
...

2

i

i

S

i ij j ij j

ijk j k ijk i j

F
P

E

P є є E H

H H H E

E H

                                      (1.3) 

The magnetization iM  along a given direction i is obtained after differentiating the energy 

with respect to the magnetic field in direction i: 

0

,

1
...

2

i

i

S

i ij j ij j

ijk i j ijk j k

F
M

H

M H E

E H E E

E H

                                     (1.4) 

The linear magnetoelectric susceptibility ij  then is defined as 

,i ij jP H                                                             (1.5) 

.j ji iM E                                                            (1.6) 

This means that an electric polarization P can be induced via an applied magnetic field H or a 

magnetization M can be induced via an applied electric field E. 

It is usually accepted that the linear ME effect responses ij  is bound by the electric e

ii  and 

magnetic 
m

jj  susceptibilities through relation given as follows [4]: 
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Figure 1.6 Multiferroics and Magneto-electrics are distinct classes of materials that can exist 

independently (taken from Ref. [5]). 

2 .e m

ij ii jj                                                            (1.7) 

This relation motivated the search of materials that are both ferroelectric and ferromagnetic 

expecting to combine the large electric and large magnetic susceptibilities and thus to observe 

a significant ME effect. In the search of new magneto-electrics, a specific attention was then 

devoted to multiferroics. 

As shown in Figure 1.6, it is however important to distinguish these two classes of materials 

because a magnetoelectric is not necessarily a multiferroic (and vice versa), although a 

significant ME effect might be observed in a multiferroic material, as in case of hexagonal 

YMnO3 studied in this work. 

1.3 Multiferroic materials 

A material is considered as a multiferroic when at least two ferroic orderings (ferroelasticity, 

ferroelectricity, ferromagnetism and ferrotoroidicity) exist in the same phase. The definition is 

often extended to antiferroic orderings. Although any combination of ferroic orderings refers 

to multiferroics, most commonly, the materials are considered as multiferroics when the 

simultaneous presence of ferroelectric and (any) magnetic orderings is observed (i.e. 
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multiferroic is a shortcut that implicitly refers to the subclass of “magneto-electric” 

multiferroics). 

The majority of multiferroic materials that show an interest of the ME effect for the 

applications are qualified in four crystallographic groups: 

1. Compound with perovskite structure: These compounds with chemical formula ABO3 

(see Section 1.1) and their ferroelectric properties are intensively studied theoretically 

as well as experimentally. 

2. Compounds with hexagonal structure: When the cation radius is enough small, the 

compounds ABO3 crystallizes into the hexagonal structure rather than in usual 

perovskite structure. The number of manganites with chemical formula RMnO3 (with 

R = Sc, Y, In, Ho, Er, Tm, Yb, Lu) belongs to this class and are simultaneously 

ferroelectric and antiferromagnetic. 

3. Compounds of boracites class: The materials with chemical formula M3B7O13X (with 

M = Cr, Mn, Fe, Co, Cu, Ni and X = Cl, Br, I) are generally ferroelectric, 

antiferroelectric and ferroelastic, and usually crystalizes into a cubic and/or 

orthorhombic structure. The Ni3B7O13I is the first material discovered to show 

simultaneously ferroelectric and ferromagnetic orderings [6]. 

4. Compounds of type BaMF4 (with M = Mg, Mn, Fe, Co, Ni, Zn): These materials 

crystallize into the orthorhombic structure and are simultaneously ferroelectric and 

antiferromagnetic. 

The next section details more the concept of ferroelectricity presenting the main definition 

and classification of proper and improper ferroelectrics. 

1.4 Proper and improper ferroelectricity 

A material is classified as ferroelectric when at zero applied electric field it has a non-zero 

electric polarization referred to as “spontaneous polarization”. In addition, this electric 

polarization must be switchable between different metastable states by the application and 
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removal of an electric field. The coupling between the field E and polarization P causes the 

changes of the relative energy of the states and gives rise to electric hysteresis loop 

(Figure 1.7). In addition, to be a ferroelectric a material must be insulating (otherwise the 

mobile charges would screen out the electric polarization) and the structure of the crystal must 

contain a polar space group. 

 

 

Figure 1.7 A typical P-E hysteresis loop. One half of the difference B AP P  defines the 

magnitude of the spontaneous polarization sP  in the vertical direction. 

The key concept of ferroelectricity – polarization – can be measured experimentally as well as 

determined from the calculations. Experimentally the polarization is determined measuring 

the electric current going through a ferroelectric capacitor when the polarization is switched. 

The magnitude of spontaneous polarization can also be estimated theoretically using Born 

effective charges *Z  and distortions  from a reference centrosymmetric structure to the 

ferroelectric phase as follows 

*1
,P Z                                                         (1.8) 

where  is the volume of the unit cell. The polarization can also be more accurately 

determined using the Berry phase formalism [7]. 

Most ferroelectrics undergo a structural phase transition from a non-polar centrosymmetric 

paraelectric phase (usually referred to a high-symmetry phase) to a polar noncentrosymmetric 
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ferroelectric phase when lowering the temperature. The transition mechanism is different in 

proper and improper ferroelectrics. 

Non-ferroelectric materials are characterized by a single-well energy potential in terms of 

polarization having its minimum at zero polarization as shown in Figure 1.8 (red curve). 

Proper ferroelectric materials are characterized by a double-well potential and a minimum of 

energy at non-zero polarization (Figure 1.8, green curve). The negative curvature of the 

energy at the origin, corresponding to the reference paraelectric phase, is associated to an 

imaginary frequency of a given unstable zone-center polar mode. The ferroelectric phase 

transition arises from the condensation of this unstable polar mode, which turn will lead to a 

small change of the cell size and shape. The spontaneous polarization is produced directly by 

the condensation of the polar mode that acts as a primary order parameter. 

 

 

Figure 1.8 Internal energy U as a function of polarization for a non-ferroelectric material (in 

red), for a ferroelectric material (in green) and for an improper ferroelectric (in blue). 

Improper ferroelectrics are characterized by a single-well energy potential in terms of 

polarization as shown in Figure 1.8 (blue curve). In this case, there is no unstable polar mode 

in the paraelectric phase (red curve). The ferroelectric transition is driven by an unstable non-

polar mode that through a linear coupling with the polar mode will shift energy well of the 

latter to lower energy and induce a non-zero polarization (from red to blue curve in 

Figure 1.8). In improper ferroelectrics, the spontaneous polarization is a secondary order 

parameter coupled to a primary non-polar lattice distortion. More detailed discussion is 

reported in Section 1.5.2. 
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1.5 Hexagonal yttrium manganite (YMnO3) 

1.5.1 Introduction 

Hexagonal yttrium manganite is a multiferroic material, in which the simultaneous occurrence 

of the ferroelectric and magnetic orderings exist at low temperature. 

On one hand, as shown in Figure 1.9, at room temperature, YMnO3 is ferroelectric (FE) [8,9] 

with an experimentally reported spontaneous polarization 25.5μC/cmP  [10]. At the Curie 

temperature C 1273 KT , it undergoes a ferroelectric phase transition from a FE to a 

paraelectric (PE) phase [11]. The high-temperature PE phase is in P63/mmc space group 

(Figure 1.5). 

 

 

Figure 1.9 Temperature scale of the electric and magnetic phase transitions in hexagonal 

YMnO3. 

On the other hand, YMO3 is an A-type antiferromagnetic material. At the Néel temperature 

N 75 KT  (Figure 1.9), it undergoes a magnetic phase transition from an antiferromagnetic 

(AFM) to a paramagnetic (PM) phase [12]. 

YMnO3 is multiferroic only below 75 K . Although a big difference between the critical 

temperature of electric and magnetic orderings may suggest that no magnetoelectric coupling 

is present, the anomalies in the dielectric constant [13] and the optical measurements [14] 

confirm the existence of the ME effect in this compound. 
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1.5.2 Geometrically driven ferroelectricity 

As presented in the previous section, YMnO3 is a ferroelectric material. The mechanism for 

ferroelectricity has been already identified [15,16] classifying YMnO3 as an improper 

ferroelectric [16]. In the following, we summarize the discussions concerning the origin of 

ferroelectricity in YMnO3 mainly based on Fennie and Rabe first-principles modelling [16] as 

their developed model form a basis for our model presented and discussed in Chapter 5. 

Fennie and Rabe through the group theoretical analysis proposed [16] that there are three 

symmetry-allowed paths from a high-temperature paraelectric (PE) P63/mmc to a low-

temperature ferroelectric (FE) P63cm phase of YMnO3 shown in Figure 1.10. Our calculations 

discussed in Section 4.4 in Chapter 4 and Chapter 5 are in agreement with this scheme and 

argued evidences that the Path (3) is the most natural phase transition from PE to FE driven 

by a highly unstable zone-boundary 3  mode. 

 

 

Figure 1.10 Symmetry-allowed ferroelectric phase transition paths from the high-temperature 

paraelectric P63/mmc to the low-temperature ferroelectric P63cm phase of YMnO3 (taken 

from Ref. [16]). 

The Path (1) with a probable P63mc intermediate phase was discarded since this is still a 

phase with 10 atoms in a unit cell contrary to the experimental measurements that confirmed 

the unit cell tripling (of the 10-atoms cell) occurring before or at the FE transition. The 

Path (2) at least was not in contradiction with experimental observations: first, the unit cell 

tripling at 1273 K and, second, the experimental signs of intermediate paraelectric phase 
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P63/mcm below this temperature at about 1000 K. Although, contrary to what was expected 

by Aken and al. [15], in Chapter 5 of this work we show that there is no unstable 
1
 mode in 

the paraelectric phase and the contribution of 1  to FE transition is negligible ruling out this 

path. 

In order to realize the Path (3), Fennie and Rabe [16] decomposed the ferroelectric distortion 

into the symmetry-adapted modes of the paraelectric phase and determined that a non-polar 

zone-boundary 3  mode and a polar zone-center 
2
 mode are the dominant modes in the 

ferroelectric distortion that relates the paraelectric phase and the low-temperature ferroelectric 

phase. 

Further on, the performed energy calculations revealed that although YMnO3 is ferroelectric, 

the polar 
2
 is stable showing a characteristic single-well energy potential (Figure 1.11, top) 

and only the non-polar 3  mode is unstable with a double-well potential (Figure 1.11, 

bottom) meaning that the 3  is a primary order parameter in the ferroelectric transition in 

YMnO3. 

 

 

Figure 1.11 Energy as a function of 2  and 3  mode amplitudes 
2

Q (top) and 
3

Q  (bottom) 

in the range of [0,1]  in fractional units, respectively (taken from Ref. [16]). 
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Then, Fennie and Rabe noticed, that the condensation of 
3
 mode drives the single well of 

2
 mode to lower energy inducing a finite polarization as shown in Figure 1.12. This means 

that the polarization is directly related to the polar 
2
 mode (i.e. 

2

QP ) and can be 

calculated using the Berry phase formalism [7]. 

 

 

Figure 1.12 Energy as a function of 2  mode amplitude 
2

Q  at fixed 3  mode amplitude 

3
Q  in the range of [0,1]  in fractional units (taken from Ref. [16]). 

Finally, the coupling of the unstable non-polar 3  mode with the polar 2  mode by shifting 

the 2  mode from a zero to a non-zero equilibrium position is consistent with the presence of 

a linear term 
3 2

3Q Q  of 3  and 2  modes in the energy expansion: 

3 3 32 2 2

3 32 2

2 4 2 4

20 40 20 40

3 2 2

310 220

[ , ]

.

E Q Q Q Q Q Q

Q Q Q Q
                         (1.9) 

This linear term specifically identifies the improper ferroelectrics. 
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1.5.3 Non-collinear magnetic ordering 

As introduced previously, hexagonal YMnO3 is antiferromagnetic with a magnetic order 

present due to the magnetic Mn atoms. The optical second harmonic measurements 

determined the magnetic structure and observed a planar triangular arrangement of the Mn 

spins shown in Figure 1.13. 

 

 

Figure 1.13 Planar triangular magnetic structures of hexagonal RMnO3 manganites 

determined from optical second harmonic measurements. The parallel (model α ) and 

antiparallel (model β ) orientation in xy plane of the magnetic unit cell of Mn spins at 0z  

(closed arrows) and at / 2z c  (open arrows). (taken from Ref. [17]). 

We have limited our first-principles studies to collinear magnetism considering a planar 

antiparallel magnetic ordering shown in Figure 1.14. The Mn spins in xy plane of the 

magnetic unit cell at 0z  were oriented parallel up and in plane / 2z c  oriented parallel 

down. Each plane has a certain magnetic moment, but the total magnetic moment is equal to 

zero defining well the antiferromagnetic ordering of YMnO3. 

As it will be discussed in Chapter 3, our limitation to collinear magnetic ordering of Mn 

atoms might result in less well defined atomic position of Mn atom in the ferroelectric phase 

of YMnO3. Although, a good agreement between our first-principles calculations discussed 

throughout this thesis and experimental data propose that it is reasonable to assume that most 

quantities (like geometry, Born effective charges, phonons, magnetic moments…) will not be 

significantly affected limiting ourselves to collinear magnetic ordering. 
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Figure 1.14 Planar antiparallel magnetic ordering in xy plane of the magnetic unit cell of Mn 

spins at 0z  (closed arrows) and at / 2z c  (open arrows) considered in our first-principles 

calculations. 
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  Chapter 2

 

Description of used techniques 

This chapter provides a brief overview of techniques - theoretical as well as experimental - 

that we used to study the properties of hexagonal YMnO3. The main concepts of theoretical 

technique - the first-principles calculations based on the density functional theory – are 

reviewed in the first section of this chapter. The second section is devoted to the main 

experimental techniques used in our study – Raman spectroscopy, liquid injection Metal 

Organic Chemical Vapor Deposition and X-ray diffraction. 

2.1 First-principles calculations 

2.1.1 Density functional theory 

We performed our first-principles calculations using softwares based on the density functional 

theory (DFT) [18], which states that ground-state energy of the system of many interacting 

electrons might be formulated as a functional of the electronic density. The success of DFT 

included in close association with independent-particle approaches has led to widespread 

interest and became among the most popular and versatile methods available in the theory of 
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materials. The results obtained using this theory are usually in a good agreement with 

experimental values. Thus, later discussing our results in Chapter 3 and Chapter 4, we tend to 

compare our first-principles results with the experimental measurements available in the 

literature as well as with our own experimental studies. 

2.1.1.1  General problem 

In quantum mechanics, a solid can be considered as a system of nuclei and electrons 

interacting with each others. The system might be expressed through the Hamiltonian written 

as follows 

N e NN ee eNH T T V V V ,                                             (2.1) 

The significance and mathematical form of each term is given in the following 

- the kinetic energy of nuclei: 

2 2

2

1

2
N

I I I

T
M R

                                                   (2.2) 

- the kinetic energy of electrons: 

2 2

22
e

ie i

T
m r

                                                     (2.3) 

- the interaction between nuclei: 

2

2

I II
NN

I J I J

Z Ze
V

R R
                                                  (2.4) 

- the interaction between electrons: 

2 1

2
ee

i j i j

e
V

r r
                                                     (2.5) 

- the interaction between electrons and nuclei: 
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2 I
eN

iI i J

Z
V e

Rr
,                                                  (2.6) 

where IZ  is the charge of nucleus I  with mass IM , em  and e  is the mass and elementary 

charge of the electron, IR R  and ir r  label the set of all nuclei IR  and electronic ir  

coordinates, respectively. 

The exact ground state can in principle be obtained by solving the corresponding Schrödinger 

equation 

H E ,                                                          (2.7) 

where H  is the Hamiltonian of the system,  is the many-body wave function for all the 

particles and E  is the corresponding energy. 

But the problem is too complex to be solved in practice. The theory requires approximations 

in order to simplify and solve the problem. 

2.1.1.2  The Born-Oppenheimer approximation 

The Born-Oppenheimer approximation is based on the observations that I eM m . This 

means that the kinetic energy of nuclei NT  can be neglected in Eq.2.1. Assuming 0NT , 

there is no any differential operator acting on the positions of the nuclei, so that it becomes a 

parameter of the Hamiltonian. In other words, since the mass of the nuclei is much larger than 

the mass of the electrons, they are much slower and the electrons adiabatically adopt to nuclei 

positions. The Hamiltonian (Eq.2.1) simplifies to the expression written in the following 

e e NN ee eNH T V V V .                                                (2.8) 

Although the problem is now reduced to the study of the interacting electrons in an external 

potential generated by the nuclei, the difficulty to obtain the direct solution remains due to the 

complexity of many-body wave function: 

e e e eH E .                                                        (2.9) 
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Other simplifications are required to estimate the electronic interactions. 

2.1.1.3  Kohn-Sham density functional theory 

The most common implementation of DFT is through the Kohn-Sham approach [19] that 

maps the system of many interacting electrons on to a system of fictitious independent 

particles leading to the same ground-state density as the real system, which makes the 

problem possible to solve practically. 

It can be shown that the electronic ground-state of the system is given minimizing self-

consistently with respect to the density the following energy functional KSE  [20]: 

21 1
 '  ,

2 2
KS i i i xc ext NN

i

n n
E d d E n V n d V

r r'
r r r r r

r r'
 (2.10) 

where the first term corresponds to the kinetic energy of independent electrons, the second 

term is the classical Coulomb energy (Hartree energy HartreeE ) of the electron density rn , 

the third term is the exchange and correlation energy xcE , the fourth term is the energy of 

electrons in the external extV  potential created by nuclei and the last term is the interaction 

between nuclei (see Eq.2.4). All these terms are well defined except the exchange-correlation 

functional xcE n  that contains all the electronic interactions going beyond the classical 

Coulomb interaction HartreeE . DFT is an exact theory: if the exact functional xcE n  was 

known, then the exact ground-state energy and density of many interacting electrons problem 

would be provided by minimizing Eq.2.10. Unfortunately, although Kohn and Sham 

demonstrated the existence of such a functional, its far remains elusive and, in practice, 

calculations rely on approximate xcE . 

2.1.1.4  Functionals for exchange and correlation term 

The most common approach to determine the exchange-correlation between interacting 

electrons is the local density approximation (LDA) (or more generally the local spin density 
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approximation (LSDA)), which locally substitutes the exchange-correlation energy density of 

the inhomogeneous system by that of a homogeneous electron gas evaluated at the local 

density: 

homLDA

xc xcE n є n n dr r r .                                        (2.11) 

The exchange energy of the homogeneous gas hom

xє  is given by a simple analytic form: 

1/3
hom 23

3
4

xє n n .                                              (2.12) 

While the correlation energy 
hom

cє n  has been fitted on Monte Carlo simulations on the 

homogeneous electron gas of different densities [21]. 

Semi-local generalized gradient approximations (GGA) are more evolved with marked 

improvements over LSDA as it also takes into account a dependence on the local density 

gradient [22,23]. The high accuracy of provided results has led to a wide use in the 

computational chemistry. 

The most accurate are the hybrid functionals, which are essentially a combination of usual 

exchange-correlation functionals with a small percentage of exact exchange in order to go 

beyond the usual functionals and improve their deficiencies. 

Throughout this thesis, we report in comparison both B1-WC hybrid functional [24] and 

LSDA+U [25] results. 

2.1.1.5  LSDA+U 

The LSDA calculations typically underestimate the lattice parameters by 1-2 % and phonon 

frequencies by 5% relative to the experimental values. Although, LSDA leads to significant 

underestimates of the band gap estimation. The LSDA+U functional has proved successful to 

open a band gap in a study of magnetic ferroelectric oxides. The Hubbard U term is often 

taken from constrained density functional calculations so that the theories do not contain 

adjustable parameters. 

te
l-0

08
70

83
6,

 v
er

si
on

 1
 - 

8 
O

ct
 2

01
3



34 

While YMnO3 is an insulator with a band gap of 1.55 eV, it is described as a metal in LSDA 

calculations. In order to describe it as an insulating material, we used U term to open a band 

gap between the filled and empty 3d orbitals of Mn atoms. In this way, the LSDA-type 

calculations are coupled with orbital-dependent interaction. This additional interaction is 

usually considered only for high localized atomic-like orbitals on the same site. 

2.1.2 Technical details 

2.1.2.1  Structural optimization 

Our first-principles calculations were performed with collinear magnetism within the 

LSDA+U as implemented in the ABINIT code [26] and within the B1-WC hybrid scheme 

[24] using the CRYSTAL code [27]. 

In ABINIT calculations, we used the projector augmented-wave (PAW) approach with atomic 

data generated by N. Holzwarth and coworkers [28,29]. The cutoff radius Rc was 2.0 Bohr for 

Y, 1.9 Bohr for Mn and 1.0 Bohr for O. We used the Perdew-Wang parameterization of 

LSDA [30] and the LSDA+U formalism of Liechtenstein et al. [25]. The values of Hubbard U 

term U = 8 eV and exchange parameter J = 0.88 eV, obtained by Medvedeva et al. [31] from 

constrained LSDA supercell calculations [32,33], were applied to Mn d orbitals. The 

evolution of the band gap Egap and magnetic moment B of Mn atoms in term of U will be 

discussed in Chapter 3. The wavefunctions were expanded in plane waves up to a kinetic 

energy cutoff of 35 Ha (Figure 2.1). The sufficiently large PAW energy cutoff for the double 

grid was of 50 Ha. Integrals over the Brillouin zone were approximated by sums on a 

4 x 4 x 2 (for P63cm 30 atom cell) and 6 x 6 x 2 (for P63/mmc 10 atom cell) k-point mesh 

(Figure 2.2). The self-consistent cycles were converged up to tolerances of 10
-8

 Ha / Bohr on 

the difference of forces for the electronic degrees of freedom and of 10
-7

 Ha / Bohr on the 

maximal forces for the structural relaxations. The energy cutoff, k-point mesh and 

convergence criteria were optimized to reach good convergence of phonon frequencies. 
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Figure 2.1 LSDA+U total energy E per YMnO3 formula units (5 atoms) as a function of the 

energy cut-off Ecut for a) P63cm and b) P63/mmc phases. 

  

Figure 2.2 LSDA+U total energy E per YMnO3 formula units (5 atoms) as a function of the 

k-point mesh for a) P63cm and b) P63/mmc phases. 

In CRYSTAL calculations, we used a linear combination of atomic orbitals (LCAO) approach 

and localized Gaussian basis sets for Y [34], Mn [35] and O [36]. For Y
3+

 ion, the outermost 

6sp, 7sp, and 8sp shells of the Y free atom were not considered. The Gaussian exponents of 

the outermost 5sp, 5d shells and the scale factor of 4d shell were optimized in YMnO3 

ferroelectric phase considering antiferromagnetic (AFM) order for Mn spins. The values for 

the optimized exponents of 5sp, 5d shells and the scale factor of 4d shell are 0.2633225, 
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0.1171919 and 1.0086, respectively. For Mn
3+

 ion the optimized values for the exponent of 4d 

shell and the scale factor of 3d shell are 0.259 and 1.02, respectively. Brillouin zone 

integrations were performed using a 4 x 4 x 2 mesh (for P63cm 30 atom cell) of k-points. The 

self-consistent calculations were considered to be converged when the energy changes 

between interactions were smaller than 10
−14

 Ha. An extralarge predefined pruned grid 

consisting of 75 radial points and 974 angular points was used for the numerical integration of 

charge density. We performed full optimization of the lattice constants and atomic positions. 

The optimization convergence of 2.5 x 10
−5

 Ha / Bohr in the root-mean square values of 

forces and 6 x 10
−5

 Bohr in the root-mean square values of atomic displacements was 

simultaneously achieved. The level of accuracy in evaluating the Coulomb and exchange 

series is controlled by five parameters [27]. The values used in our calculations are 7, 7, 7, 7, 

and 14. 

All calculations were performed at 0 K for a A-type AFM order. 

2.1.2.2  Phonon calculations 

Phonon calculations were done in a frozen phonon framework. Hessian matrix was built by 

displacing the atom by ~ 0.0028 Å (for ABINIT) and 0.003 Å (for CRYSTAL) in the 

primitive cell and calculating the forces on all the atoms in the unit cell. Positive and negative 

displacements were considered in order to minimize the influence of the anharmonic effects. 

The amplitude of displacement was chosen as a compromise in order to minimize the 

numerical errors, while staying close to the linear response regime. Dynamical matrix was 

built from the Hessian one and we used PHON code [37] to compute the frequencies of TO 

modes. The nonanalytical term [38] was calculated and added to the dynamical matrix in 

order to determine the frequencies of LO modes and calculate the angular dispersion curves of 

oblique phonon modes (see Section 4.2.3.2). The acoustic modes were set to zero by 

reimposing the acoustic sum rule. 

In all cases, phonon calculations were performed at the theoretically optimized lattice 

parameters reported in Chapter 3. Although this choice is the most consistent from the 

theoretical point of view, inaccuracies on the structure can have a direct impact on the phonon 
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frequencies and the correct prediction of lattice parameters becomes a critical issue in the 

calculation, as further discussed in the next section. 

The Born effective charges for the ferroelectric YMnO3 were calculated with ABINIT using 

the Berry phase approach [7] by displacing the atom by ~ 0.005 Å along the crystal axes and 

calculating the induced polarization. Positive and negative displacements were considered in 

order to minimize the influence of the anharmonic effects. The acoustic sum rule gives values 

smaller than 0.01 .e  

2.2 Experimental techniques 

2.2.1 Raman spectroscopy 

2.2.1.1  Introduction 

In our work, the phonon frequencies were obtained using one of the main methods – Raman 

spectroscopy. This technique enables to observe how the light interacts with condensed 

matter. It may be reflected, absorbed or scattered in some manner. The general explanation of 

the Raman effect is that the incident light with a certain frequency i  interacts with the lattice 

vibrations (phonons) and the energy  gained or lost by the lattice is compensated by a 

decrease or increase in the frequency s  of the scattered light ( s i ) [39]. 

We measured our polarized Raman spectra using the Porto notation: 

,i i s sk E E k                                                         (2.13) 

where ik  and sk  are the wavevectors of incident and scattered light, iE  and sE  are the 

electric polarization of incident and scattered light, respectively. In case of back-scattering 
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experimental setup, 
sk  corresponds to sk ; the underline means that the direction of scattered 

light is reversed by 180° respect to incident light direction (Figure 2.3). 

 

 

Figure 2.3 An example of Porto notation ( )z xy z : the wavevector of incident light ik  is 

directed along z direction and the wavevector of back-scattered light sk  is collected along 

z-axis direction, the polarization of incident light is aligned along -axisx and the polarization 

of back-scattered light is collected aligned along y-axis. x , y  and z  are the axes of the 

Cartesian coordinate system. 

We identified the phonon symmetries from the Raman tensors, which in case of hexagonal 

YMnO3 (space group: P63cm) are written as follows 

1 1 1

0 0 0 0 0 0 0

0 0 ,    0 0 ,    0 0 0 ,

0 0 0 0 0 0

a c

A z a E y c E x

b c c

 

2 2

0 0 0 0

0 0 ,    0 0 .

0 0 0 0 0 0

d d

E d E d

 

The allowed phonon symmetries in YMnO3, labeled with Porto notation, for Raman scattering 

are summarized and discussed in Section 4.2.3.1 in Chapter 4. 
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2.2.1.2  Technical details 

Our Raman spectra were recorded with a LabRam Jobin-Yvon spectrometer equipped with a 

liquid-nitrogen-cooled charge-coupled-device (CCD) detector. The 514 nm line of an Ar
+
 ion 

laser was used as an excitation wavelength. The light was focused to a 1 m
2
 spot using a 

 100 objective at room temperature. The material is sensitive to the laser power (heating 

effects), thus the experiments were carried out using an incident power less than 0.5 mW to 

avoid overheating of the crystal. The signal of each spectrum was accumulated 2000 s twice. 

All measurements, performed under the microscope, were recorded in a back-scattering 

geometry; the instrumental resolution was 2.8  0.2 cm
-1

. 

2.2.2 Liquid injection MOCVD 

2.2.2.1  Introduction 

Our epitaxial thin films of hexagonal YMnO3 were grown using liquid injection Metal 

Organic Chemical Vapour Deposition (MOCVD). CVD is a deposition process in which a 

solid film is formed from a gas phase via chemical reactions taking place in heterogeneous 

phase (i.e. reactions occur on a surface, not in the gas phase). All by-products of the reactions 

should be gaseous and are evacuated. 

The volatile compounds (precursors) containing the constituent atoms of the grown material 

in the gas phase are transported to the chamber by a carrier neutral gas (Ar gas in our case). 

When the precursors are liquid or solid, the gas phase has to be created by evaporating the 

precursors. This is the case for complex oxide deposition. A major difficulty for the CVD of 

complex oxides is to create a stable gas phase while the precursors are not very volatile and 

are, moreover, thermally unstable. If they are heated for a prolonged time in bubblers (which 

is a classical way to evaporate liquid precursors), they degrade and the cationic composition 

drifts. In order to solve this issue, the LMGP has designed an injector liquid source, that has 

been patented by CNRS [40]. It is based on the sequential injection of micro-amounts of 
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liquid precursors into an evaporator where “flash” volatilisation occurs. The flash 

volatilization ensures that the precursors do not degrade before volatilization. 

The liquid solution of precursors is injected with an injector of the same type as those used for 

the fuel injection in thermal motors. It is a high-speed reliable electrovalve driven by 

computer. The liquid is kept in a closed vessel, pressurized under few bars of argon. The 

reactive species flow rate created in the evaporator depends on the electrical pulse width, 

which defines the volume of the droplets (typically of the order of a few milligrams) on the 

injection frequency of the microvalve, on the viscosity and concentration of the liquid 

solution and on the differential pressure between the reservoir and the evaporator. 

 

 

Figure 2.4 Schema of liquid injection MOCVD (taken from Ref. [41]). 

The deposition of complex oxides is realized either by injecting each precursor separately or 

by using a single injector fed with a mixture of the different precursors. This is the later case 

that we used. 
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Figure 2.4 illustrates our liquid injection MOCVD reactor used for the growth of epitaxial 

thin films of hexagonal YMnO3 on YSZ (111) substrates. 

The reactor consists of three main parts: 

- liquid injection source: an injector with the liquid precursor solution, the cooling system in 

order to avoid overheating of the injector and the evaporation chamber, in which the liquid is 

injected to be flash volatilized. The carrier gas flow rate is regulated using a mass flow meter. 

- growth chamber: a vertical quartz tube and a stainless steel substrate holder with a hot-wall 

type configuration. The cylindrical hot wall is heated by radio frequency (RF) inductive 

currents and the substrate holder is heated mostly by radiation. The temperature of the 

substrate holder is regulated. Di-oxygen is induced in the deposition chamber (here via the 

evaporator) and the flow rate is regulated using a mass flow meter. The total pressure is 

regulated using a butterfly valve. 

- evacuation: a primary pump and a cold trap using liquid nitrogen to condense the residual 

decomposition compounds to avoid contamination of the vacuum pump. 

2.2.2.2  Technical details 

The growth parameters of our epitaxial thin films of hexagonal YMnO3 on YSZ (111) 

substrates by liquid injection MOCVD are listed in Table 2.1. 

The metalorganic volatile precursors were Y(tmhd)3 and Mn(tmhd)3, where tmhd stands for 

2,2,6,6-tetramethyl-3,5-heptane-dionate. The precursors were solid at room temperature and 

were dissolved in monoglyme solvent (1,2-dimethoxyethane), in concentration of 0.02 mol/l. 

Both precursors were mixed in a unique solution to deposit YMnO3. The precursors were 

provided by SAFC Hitech [42] within the framework of the European MaCoMuFi STREP 

project. 

Each growth of thin film was followed by an in situ annealing at the growth temperature for 

15 minutes in 1 bar of oxygen to fully oxygenate the film. 
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Solution 

Precursor Y(tmhd)3, Mn(tmhd)3 

Solvant monoglyme 

Concentration 0.02 mol/l 

Composition Y Mn/n n  0.8 – 1.2 

Temperature 

Zone of injection 250 °C 

Zone of evaporation 250 °C 

Zone of growth  825 – 900 °C 

Environment in growth 

chamber 

Pressure 6.7 mbar 

Flow of O2 300 cm
3
/min 

Flow of Ar 300 cm
3
/min 

Injection parameters 

Opening time of injector  2 ms 

Frequency of injections 1 Hz 

Mass of one injection ~ 2 - 4 mg 

Annealing 

Pressure 1 bar 

Temperature 825 – 900 °C 

Time 15 min 

Table 2.1 Growth parameters of the hexagonal YMnO3 by liquid injection MOCVD. The 

optimized parameters in this work are marked in bold. Annealing was performed at growth 

temperature. 

2.2.3 X-Ray diffraction 

2.2.3.1  Introduction 

We performed the structural characterizations of our grown YMnO3 films using X-Ray 

diffraction (XRD) technique. 

XRD diffraction is a non-destructive analytical technique, which provides the information 

about the crystalline structure of material. This technique is based on the observation of 

scattered intensity of an X-ray beam by the atoms of the crystal. X-rays are electromagnetic 

radiation with wavelengths (in the range 0.5 - 2.5 Å) of the same order of magnitude as the 

interatomic distances in solids. 
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Figure 2.5 Diffraction condition. λ and θ, a wavelength and an angle of incident X-ray beam, 

respectively; dhkl, a distance between hkl lattice planes; K , a scattering vector defined as 

s iK k k , with the wavevectors of incident ik  and scattered sk  X-rays; n, a diffraction 

order (integer). 

When the incident X-ray beam arrives to a crystal, it is scattered in all directions by the atoms 

of crystal. In some directions, the increased intensity of scattered beam is observed due to the 

constructive interference of the scattered waves. 

Figure 2.5 illustrates the conditions for a constructive interference of the X-ray beam of 

wavelength λ incident on the crystal at an angle θ and scattered from the hkl lattice planes 

with interplanar distance dhkl. The constructive interference is observed when (i) the X-rays 

are reflected from the lattice planes at the specular angle, (ii) the path length difference 

between X-rays scattered from different hkl-planes is an integer (n) times the wavelength and 

(iii) the scattering vector K is parallel to the normal of the hkl-planes. The diffraction 

condition is summarized in the Bragg law: 

n 2 sinhkld .                                                    (2.14) 

Depending on a chosen X-ray setup, the different structural properties of the crystal might be 

investigated. 

hkl

hkl

hkl
hkld

1

2...2

K

k i k s
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We used  / 2  locked coupled scan in Brag-Brentano geometry to determine the nature of 

crystalline phases present in films (secondary phases), the preference crystalline orientation of 

films and the out-of plane c-lattice parameter. 

Then, we performed the rocking curve scans in order to determine the mean spread of c-axis 

orientation. 

2.2.3.2  Technical details 

We performed the XRD measurements of our YMnO3 films using Siemens D500 

diffractometer: with the Cu-Kα1 line with wavelength Cu = 0.154056 nm for  / 2  scans (the 

radiation of Cu-K  line was eliminated by germanium monochromator, the Cu-Kα2 line much 

less intense than Cu-Kα1 line) and with the Fe-(2Kα1+Kα2)/3 lines with average wavelength 

Fe = 0.19373 nm for rocking curve scans (the fluorescence and the radiation of Fe- K  line 

was eliminated by graphite monochromator). 

For  / 2  locked coupled scan, the X-ray tube was set at a tension of 40 kV and a current of 

30 mA. The scattering angle was between 2  = 10° and 2  = 90°with step of 0.04 °. At each 

angle the signal was collected between 8 to 40 s. The samples were tilted by 0.3° in order to 

avoid the saturation of the detector because of the intense scattering coming the single 

crystalline substrate. For c-lattice parameter determination, the scattering angle was between 

2  = 58° and 2  = 68° (to measure 004 reflection of YMnO3 film and 222 reflection of YSZ 

substrate) with step of 0.02°. The crystalline phases and their orientations present in samples 

were identified from the angle of diffraction 2   using The International Centre for Diffraction 

Data (ICDD). 

For rocking curve scan, the X-ray tube was set at a tension of 40 kV and a current of 35 mA. 

The angle  was varied between 17.5° and 22° with step of 0.01° and counting time between 

10 and 40 s for 2  = 39.7° (to measure the most intense 004 reflection of YMnO3). Two slits 

of 0.1° before sample and two slits of 0.1° and 0.05° after sample were used to achieve higher 

resolution. 
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  Chapter 3

 

Structural properties of YMnO3 

The ground-state structure of hexagonal YMnO3 is ferroelectric and belongs to the space 

group P63cm stable below  1270 K [11]. At high temperature, YMnO3 undergoes a structural 

phase transition and crystallizes into a paraelectric P63/mmc structure. 

This chapter overviews the structural properties of both phases of hexagonal YMnO3. Our 

theoretical lattice parameters, atomic positions, band gap and local magnetic moment of Mn 

atoms are discussed in comparison to other theoretical and experimental values available in 

the literature. 

3.1 Ferroelectric phase P63cm 

The ground-state structure of YMnO3 is shown in Figure 3.1. This ferroelectric phase of space 

group P63cm contains six formula units (30 atoms) in its primitive unit cell. Two inequivalent 

Y1 and Y2 atoms form layers in between the MnO5 triangular bipyramids tilted with respect to 

c-axis. Equivalent Mn atoms are surrounded by non-equivalent oxygen atoms - apical O1, O2 

and planar O3, O4. Table 3.1 lists the generic atomic positions in reduced coordinates. The 

displacement  indicates the magnitude of the distortion with respect to the high-symmetry 
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position occupied in the P63/mmc paraelectric phase (see section 3.2). The oxygen atoms O1 

and O2 have a degree of freedom along c-axis in both phases and their position in the 

ferroelectric phase are noted as zO1 and zO2. The origin in the ab plane is set to the Y1 atom 

while the origin along c is set to the Mn atom. 

 

 

Figure 3.1 Structure of the P63cm ferroelectric YMnO3. The view plane is (010). 

 

Atom Wyckoff Position 

Y1 2a (0, 0, 1/4 + Y1) 

Y2 4b (1/3, 2/3, 1/4 - Y2) 

Mn 6c (1/3 + Mn , 0, 0) 

O1 6c (1/3 - O1 , 0, zO1) 

O2 6c (1/3 + O2 , 0, zO2) 

O3 2a (0, 0, 0 + O3) 

O4 4b (1/3, 2/3, 0 + O4) 

Table 3.1 Generic atomic positions in the P63cm ferroelectric phase of YMnO3. 
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 Theory Experiment 

 

 
LSDA+U B1-WC LSDA+U 3 K RT RT RT RT RT RT 

 present [16] [12] [12]
 

[43]
 

[44]
 

[45]
 

[46]
 

[47]
 

a (Å) 6.085 6.144 6.099 6.121 6.138 6.147 6.139 6.155 6.148 6.148 

c (Å) 11.340 11.323 11.42 11.408 11.396 11.437 11.407 11.403 11.443 11.399 

Y1 0.0251 0.0253 0.0251 0.0260 0.0220 0.0235 0.0243 0.0189 0.0189 0.021 

Y2 0.0188 0.0190 0.0187 0.0185 0.0180 0.0172 0.0165 0.0210 0.0206 0.019 

Mn 0.0002 0.0003 0.0001 0.0107 0.0004 -0.0005 0.0019 -0.0125 -0.010 0.016 

O1 0.0271 0.0258 0.0275 0.0328 0.0253 0.030 0.0250 0.0233 0.008 0.040 

zO1 0.1635 0.1636 0.1642 0.1602 0.1620 0.163 0.1627 0.1621 0.163 0.152 

O2 0.0264 0.0250 0.0268 0.0275 0.0265 0.020 0.0254 0.0278 0.038 0.010 

zO2 -0.1634 -0.1634 -0.1641 -0.1658 -0.1636 -0.1624 -0.1628 -0.1633 -0.162 -0.173 

O3 -0.0237 -0.0226 -0.0242 -0.0205 -0.0250 -0.024 -0.0218 -0.0255 -0.016 -0.018 

O4 0.0203 0.0194 0.0207 0.0182 0.0155 0.017 0.0186 0.0133 0.022 0.023 

Table 3.2 Lattice parameters and atomic positions (see notations in Table 3.1) in the P63cm 

ferroelectric phase of YMnO3. Comparison of the theoretical results obtained from 

first-principles (LSDA+U and B1-WC) with the experimental data at room temperature (RT) 

and 3 K. 

In Table 3.2, we report our calculated LSDA+U and B1-WC structural parameters (lattice 

parameters and atomic positions as defined in Table 3.1) in comparison to previous theoretical 

and experimental values. We compare our results to the theoretical structure obtained within 

the LSDA+U approximation using VASP package by Fennie and Rabe [16] and a variety of 

experimental structural refinements [12,43,44,45,46,47]. Most referred experimental data are 

obtained at room temperature (paramagnetic order). Only Ref. [12] gives the measured 

parameters at 3 K (AFM order) and should better compare to our calculations. 

LSDA+U lattice parameters are in good agreement with the data from Fennie and Rabe and 

reproduce the experimental values at 3 K within  0.6 %. B1-WC hybrid functional gives a 

good c-lattice parameter as well, but slightly overestimates the a-lattice parameter, which 
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appears closer to the one reported at room temperature rather than to the one at low 

temperature. 

Our calculated atomic positions using both LSDA+U and B1-WC correspond very well to the 

computed Fennie and Rabe data. The standard deviation  of all theoretical predictions 

reported in Table 3.2 is small and of the order of 1x10
-4

 for Y1, Y2, Mn, 3x10
-4

 for zO1, zO2 

and 7x10
-4

 for O1, O2, O3 and O4. The experimental refinements of atomic positions 

reported in the literature are more widely dispersed. The standard deviation of the values 

reported in Table 3.2 is larger than 1x10
-3

 (comparing Ref. [12], [43], [44]) and goes up to 

1x10
-2

 (including the values of Ref. [45], [46], [47]). Most reported values from Ref. [45], 

[46], [47] are far from the average values from Ref. [12], [43], [44]. Thus we tend to compare 

our results to Ref. [12], [43], [44] that are actually in good agreement with each others. As for 

theoretical data, the most dispersed experimental values are those of the atomic positions of 

O1, O2 in ab plane and O3, O4 along c-axis. 

We notice that our calculations do not predict well the position of the Mn atom. The low 

temperature data show that this atom moves drastically away from its room-temperature 

position when going below the Néel temperature, TN = 75 K [12]. This suggests that this 

position could be strongly dependent on the magnetic order. It might therefore be important to 

go beyond collinear magnetism and to treat more properly the triangular arrangement of Mn 

spins in order to achieve a better description of the Mn position. The only attempt in this 

direction has been reported by Zhong et al. [48]. Their results are quite different from others, 

but they clearly do not compare better with experiment. 

From a more technical point of view, LSDA calculations do not describe YMnO3 as an 

insulating material, which requires to include a Coulomb interaction correction U for Mn 

atoms. YMnO3 becomes an insulator for U > 4.7 eV (rather independently of J) and, as 

expected, the band gap grows with increasing U (Figure 3.2, a). We used the values of 

U = 8 eV and J = 0.88 eV [49] that were obtained from the constrained LSDA supercell 

calculations [32,33] and that opens a band gap equal to 1.17 eV. In comparison, B1-WC 

hybrid functional estimates the band gap at a very similar value of 1.0 eV, that reasonably 

agrees with the experimental one (1.55 eV) measured at 3 K [50]. The local magnetic moment 

of Mn atoms also depends on the Hubbard U correction (Figure 3.2, b). It grows when U 
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increases, typically overestimating the experimental magnetic moment of 3.09 B measured at 

1.5 K [51]. Our LSDA+U calculations (U = 8 eV, J = 0.88 eV) predict a value of 3.68 B and 

B1-WC gives a magnetic moment equal to 3.85 B. In conclusion, there is no magic approach 

providing exact description together of the band gap and of the magnetic moment, but 

LSDA+U (with calculated U and J) and B1-WC are good compromises that yield 

simultaneously band gap and magnetic moment in satisfactory agreement with experimental 

values. 

 

  

Figure 3.2 LSDA+U band gap Egap (a) and magnetic moment B of Mn atoms (b) dependence 

on U term (J is set to a typical value of 10% of U) in the paraelectric P63/mmc phase of 

YMnO3. 

3.2 Paraelectric phase P63/mmc 

The primitive unit cell of the paraelectric P63/mmc phase shown in Figure 3.3 is smaller and 

has less ionic degrees of freedom than the unit cell of the ferroelectric P63cm phase. The non-

distorted paraelectric structure contains two formula units (10 atoms) and has one Wyckoff 

site for Y and Mn, two inequivalent sites for oxygen atoms: apical Oap and plane Opl. The 
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Table 3.3 lists the generic atomic positions in reduced coordinates. All atoms are fixed by 

symmetry except the oxygen atom defined as Oap (1/3, 2/3, zOap) that has a degree of freedom 

zOap along c-axis. 

 

 

Figure 3.3 Structure of the P63/mmc paraelectric YMnO3. 

 

Atom Wyckoff Position 

Y 2a (0, 0, 0) 

Mn 2d (1/3, 2/3, 3/4) 

Oap 4f (1/3, 2/3, zOap) 

Opl 2b (0, 0, 1/4) 

Table 3.3 Generic atomic positions in the P63/mmc paraelectric phase of YMnO3. 

Table 3.4 shows the LSDA+U lattice parameters and atomic position of oxygen atom zOap of 

P63/mmc paraelectric YMnO3 (as defined in Table 3.3) in comparison to the available 

theoretical and experimental data. We compare our results to the theoretical structure obtained 

within the LSDA+U approximation using VASP package by Fennie and Rabe [52]. Note that 
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the calculations are performed at 0 K (AFM order) and experimental values are measured at 

1285 K [53] and 1373 K [43] (paramagnetic order), respectively. 

 

 Theory Experiment 

 ABINIT VASP [52] 1285 K [53] 1373 K [43] 

a (Å) 3.555 3.561 3.61 3.622 

c (Å) 11.11 11.23 11.39 11.34 

zOap -0.0838 -0.0834 -0.0873 -0.0821 

Table 3.4 Lattice parameters a and c in angstroms, atomic position zOap (see notation in 

Table 3.3) in reduced coordinates in the P63/mmc paraelectric phase of YMnO3. Comparison 

of theoretical results obtained from first principles (LSDA+U) and experimental data. 

Our LSDA+U a-lattice parameter and zOap atomic position are in good agreement with Fennie 

and Rabe data (Table 3.4). The c-lattice parameter obtained by ABINIT code is smaller than 

the one by VASP package, but both values agree with each other within  1%. Our calculated 

structure at 0 K reproduces reasonably well (within  2.5 %) the experimental values 

measured at high temperature. 

The Figure 3.4 shows the primitive cell (10 atoms) and in-plane tripled cell (30 atoms) of 

P63/mmc paraelectric phase of YMnO3. The primitive cell drawn in the plane of Y atoms in 

red is tripled along in-plane diagonal x, y. The triple cell with axes x’, y’ is drawn in blue. The 

a-lattice parameter differs by a factor of 3 : aPE = 3.555 Å (paraelectric simple, Table 3.4) 

and aPEt = 6.158 Å (paraelectric triple). The c-lattice parameter for both cells remains 

unchanged cPE = cPEt =11.11 Å (Table 3.4). 

The Table 3.5 gives the correspondance of atomic positions in the P63/mmc paraelectric 

primitive and triple cell in reduced coordinates. The Wyckoff positions of atoms in the triple 

paraelectric phase are the same as in the ground state ferroelectric YMnO3 (see positions in 

Table 3.1). As in the P63/mmc primitive paraelectric phase, all atoms remain fixed by the 

symmetry except the apical oxygen atoms Oap1 and Oap2 that have a degree of freedom along 
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c-axis noted as zOap. We optimized the zOap value in the triple cell. The position in the 

P63/mmc simple and triple cell is equal to zOap = -0.0837896 (the same value as in Table 3.4) 

and zOap = -0.0837801, respectively. The difference between two values is of order of 1x10
-5

. 

The origin in the ab plane and along c-axis is set to the plane oxygen Opl3. 

 

 

Figure 3.4 Connection between the crystal axes: x, y of P63/mmc primitive paraelectric phase 

(red line) and x’, y’ of the P63/mmc triple paraelectric phase (blue line). The view plane is Y 

atoms (001). 

 

Atom Wyckoff P63/mmc simple Wyckoff P63/mmc triple 

Y1 2a (0, 0, 1/2) 2a (0, 0, 1/4) 

Y2 2a (0, 0, 0) 4b (1/3, 2/3, 1/4) 

Mn 2d (2/3, 1/3, 1/4) 6c (1/3, 0, 0) 

Oap1 4f (1/3, 2/3, zOap+1/2) 6c (1/3, 0, zOap+1/4) 

Oap2 4f (2/3, 1/3, -zOap+1/2) 6c (1/3, 0, -zOap-1/4) 

Opl3 2b (0, 0, 3/4) 2a (0, 0, 0) 

Opl4 2b (0, 0, 1/4) 4b (1/3, 2/3, 0) 

Table 3.5 Correspondence of the generic atomic positions (see notations in Table 3.3) of 

P63/mmc primitive and triple paraelectric phases of YMnO3. 
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As discussed in the previous section, the LSDA+U calculations are required to open a band 

gap and to have an insulating YMnO3. We used the values of U = 8 eV and J = 0.88 eV that 

were obtained from the constrained LSDA supercell calculations [32,33]. Our LSDA+U 

calculations predict the band gap equal to 0.92 eV and the local magnetic moment for Mn 

atoms equal to 3.69 B (Figure 3.2). The first attempts [31] to calculate the band gap and 

magnetic moment using LSDA+U approach implemented in the Stuttgart TBLMTO-47 code 

give a smaller value of 0.47 eV for the band gap and a slightly larger magnetic moment 

3.99 B. To the best of our knowledge, there are no available experimental values of the band 

gap and magnetic moment. 

3.3 Conclusions 

In this chapter, we discussed the structural properties of the hexagonal YMnO3 calculated 

from first principles. 

First, we reported the lattice parameters and atomic positions for the P63cm ferroelectric 

phase of YMnO3 computed within LSDA+U and B1-WC hybrid functional. Both 

approximations predict similar results that are in good agreement with experimental data, 

except for the atomic position of Mn atom that might probably be better predicted by 

including the noncollinear spin ordering treatment. Our estimated band gap and local 

magnetic moment of Mn atoms are well consistent with experimental measurements. Here, 

LSDA+U gives slightly closer values to experiment than B1-WC functional. 

Then, we discussed the structure of the high-temperature P63/mmc paraelectric phase of 

YMnO3 computed within LSDA+U. The lattice parameters and atomic positions are again in 

good agreement with the experimental values. 
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  Chapter 4

 

Dynamical properties of YMnO3 

4.1 Introduction 

In this chapter, we discuss the dynamical properties of the ground state ferroelectric P63cm 

and high-temperature paraelectric P63/mmc structures of hexagonal YMnO3. 

Iliev et al. [54] first reported a qualitative Raman scattering study of single crystals and  

mostly agree with each others and 32 of 38 Raman and infrared-active phonon modes at room 

temperature expected at -point have been identified. The list remains however incomplete 

and the proper assignment of recorded phonon modes is complicated by the fact that the 

interpretation of experimental data can only rely on semi-empirical calculations. 

First, this chapter reports the first-principles calculations of transverse optical (TO) and 

longitudinal (LO) phonon frequencies at -point of YMnO3 in its P63cm ferroelectric phase. 

We compare the results obtained using the standard LSDA+U method and the B1-WC hybrid 

functional. A partial reassignment of previously published experimental data is proposed on 

the basis of these calculations. Our recorded polarized Raman-scattering spectra of YMnO3 

single crystal at -point at room temperature support this reassignment. This new 

experimental study also confirms most previously reported data and brings to light one mode 
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never previously recorded. In addition, we report the Born effective charges and the angular 

dispersion curves of oblique phonon modes in order to take into account the misorientation of 

c-axis of our YMnO3 single crystal and thus to insure the reliability of our assignment. 

Next, we discuss the phonon frequencies at -point calculated from first principles within 

LSDA+U of high-temperature paraelectric phase P63/mmc of YMnO3. We compare the 

results with the published values in the literature measured experimentally and obtained using 

the semi-empirical model. The phonon frequencies at -point of a triple cell are reported. 

These phonon calculations combine the frequencies of modes at -point and at the zone-

boundary K-point of the primitive unit cell. 

4.2 Ferroelectric phase P63cm 

4.2.1 Introduction 

There are 90 zone-center phonon modes in the P63cm hexagonal ferroelectric phase of 

YMnO3 that can be classified into: 10A1  5A2  10B1  5B2  15E1  15E2 [55]. The A1 

and E1 modes are both Raman- and infrared-active whereas E2 symmetry modes are only 

Raman-active (Table 4.1). The A2, B1 and B2 are silent modes. The acoustic modes A1 and E1 

are set to zero by applying the acoustic sum rule. The A1, A2, B1 and B2 modes are 

nondegenerated. The E1 and E2 modes are doubly degenerated. 

 

Raman = 9A1  14E1  15E2 

infrared = 9A1  14E1 

silent = 5A2  10B1  5B2 

acoustic = A1  E1 

Table 4.1 Classification of the zone-center phonon modes of P63cm into Raman-, infrared-

active, silent and acoustic modes. 
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Figure 4.1 Orientation of q  vector for LO and TO modes around -point. 

YMnO3 is an ionic crystal (i.e. with non-vanishing Born effective charges). In such crystals, 

the long range Coulomb interaction causes a well-known phenomenon of LO-TO splitting, 

that is, the hardening of longitudinal optical (LO) modes with respect to transverse optical 

(TO) modes around the Brillouin zone center, . Moreover, this hardening and so the 

frequency of the optical modes depends on the direction in approaching  

At -point, there are 23 polar phonon modes in ferroelectric YMnO3: 9 of A1 and 14 of E1 

symmetry. The A1(TO) and E1(LO) modes have their wave vector q  oriented along a-axis 

(Figure 4.1). The A1(LO) and E1(TO) modes have their wave vector q  oriented along c-axis. 

By varying the direction  of q  from 0 to 90 ° with respect to the crystallographic a-axis, one 

can determine the angular dependence of so-called oblique phonon frequencies, as a function 

of the phonon wave vector orientation, hereafter called angular dispersion. 

4.2.2 Theoretical results 

4.2.2.1  Phonons 

Table 4.2 reports the YMnO3 phonon frequencies with A1, E1 and E2 symmetries, calculated 

within LSDA+U and B1-WC hybrid functional, in comparison to empirical values. Note that 

the TO and LO phonon frequencies of A1 and E1 modes are listed in ascending order. 

te
l-0

08
70

83
6,

 v
er

si
on

 1
 - 

8 
O

ct
 2

01
3



58 

Mode LSDA+U B1-WC SM [54]
 

Mode LSDA+U B1-WC SM [54]
 

A1(TO1) 170 172 147 A1(LO1) 172 173 147 

A1(TO2) 252 247 204 A1(LO2) 264 257 216 

A1(TO3) 272 277 222 A1(LO3) 278 288 269 

A1(TO4) 313 320 299 A1(LO4) 333 338 301 

A1(TO5) 428 435 388 A1(LO5) 428 435 398 

A1(TO6) 460 472 423 A1(LO6) 460 472 467 

A1(TO7) 498 501 492 A1(LO7) 517 526 496 

A1(TO8) 593 583 588 A1(LO8) 691 707 601 

A1(TO9) 691 707 662 A1(LO9) 728 746 662 

        
E1(TO1) 171 116 117 E1(LO1) 171 160 118 

E1(TO2) 183 166 147 E1(LO2) 183 167 149 

E1(TO3) 211 191 158 E1(LO3) 214 211 158 

E1(TO4) 245 227 212 E1(LO4) 245 244 231 

E1(TO5) 274 244 233 E1(LO5) 289 286 245 

E1(TO6) 302 298 250 E1(LO6) 338 321 337 

E1(TO7) 367 362 353 E1(LO7) 378 363 367 

E1(TO8) 379 378 390 E1(LO8) 400 413 403 

E1(TO9) 403 415 410 E1(LO9) 414 418 415 

E1(TO10) 419 426 459 E1(LO10) 459 444 477 

E1(TO11) 459 445 492 E1(LO11) 488 493 527 

E1(TO12) 489 494 559 E1(LO12) 560 562 559 

E1(TO13) 622 619 586 E1(LO13) 626 626 589 

E1(TO14) 644 652 635 E1(LO14) 644 652 635 

        
E2(1) 102 100 71     

E2(2) 145 115 108     

E2(3) 184 166 136     

E2(4) 210 171 161     

E2(5) 243 210 212     

E2(6) 261 245 241     

E2(7) 314 306 245     

E2(8) 350 360 336     

E2(9) 376 364 382     

E2(10) 398 409 407     

E2(11) 440 438 458     

E2(12) 455 450 515     

E2(13) 490 494 557     

E2(14) 623 620 580     

E2(15) 643 651 638     

Table 4.2 Zone-center Raman-active phonon frequencies (cm
-1

) of P63cm ferroelectric 

YMnO3 calculated from first principles in comparison to shell model (SM) calculations. 
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Mode LSDA+U B1-WC 

A2 

 

) 

105 99 

A2 266 263 

A2 306 314 

A2 401 408 

A2 524 533 

B1 137 139 

B1 262 261 

B1 271 272 

B1 424 434 

B1 520 526 

B2 127 122 

B2 207 209 

B2 224 225 

B2 274 274 

B2 342 351 

B2 401 407 

B2 454 461 

B2 529 540 

B2 700 719 

B2 769 788 

Table 4.3 Calculated frequencies (cm
-1

) of silent modes at -point of the P63cm ferroelectric 

phase of YMnO3. 

Table 4.3 summarizes the calculated frequencies of silent A2, B1 and B2 modes. To the best 

our knowledge, there are no previous density functional calculations in the literature. 

Both our approaches predict similar results that are consistent within 4 %. We notice that the 

LSDA+U unit-cell volume is about 2 % smaller than the one of B1-WC (see the lattice 

parameters in Chapter 3). Since the phonon frequencies can be very sensitive to the unit-cell 

volume, a certain disagreement was expected. The highest deviation is observed for low 

frequency modes, up to about 300 cm
-1

. 

Comparing the phonon frequencies determined from first-principles and empirically, the 

empirical frequencies are reasonably well predicted, although, as it will be discussed in the 
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following, the inaccuracies appear in assigning the modes. Our first-principles results provide 

a more reliable estimate of the frequencies. 

4.2.2.2  Born effective charges and optical dielectric constant 

Table 4.4 reports the Born effective charges for all atoms calculated from first-principles in 

the ferroelectric P63cm phase of YMnO3. 

As we can see in Table 4.4, the absolute value of the *

zzZ  components of Born effective 

charges for most atoms along c-axis are larger than the ones in ab plane. 

Our calculated dynamical effective charges (see in Table 4.4) are moderately larger than the 

nominal charges 3+Y ,  
3+Mn  and 2-O .  Thus, there are anomalous charges, but they are smaller 

than the ones of ferroelectric perovskites [56]. Aken et al. [15] determined the *Z s  even 

closer to nominal values * 3.6,YZ  * 3.3,MnZ  
* -2.2

plOZ  and 
* -2.3.

apOZ  The 

experimental measurements [57] give values slightly larger than our calculations * 4.0,YZ  

* 4.0,MnZ
* -2.7

plOZ  and 
* -2.7.

apOZ  This explains in part a small polarization of the 

hexagonal ferroelectric phase of YMnO3. In section 5.4 Chapter 5, we discuss the polarization 

in more details. 

For the computation of the LO-TO splitting, we used the optical dielectric constant 6.46  

along c direction taken from Ref. [57]. 

4.2.3 Experimental results 

4.2.3.1  Introduction 

In addition to calculations, we used Raman spectroscopy technique to record Raman spectra. 

There are 38 Raman-active phonon modes in hexagonal ferroelectric YMnO3. The Table 4.5 

reviews all possible scattering configurations and observable modes. 
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Y1,2 3.71 0.00 0.00 Y3,4 3.78 -0.10 0.00 Y5,6 3.78 0.10 0.00 

 0.00 3.71 0.00  0.10 3.78 0.00  -0.10 3.78 0.00 

 0.00 0.00 3.97  0.00 0.00 3.90  0.00 0.00 3.90 

            
Mn1 3.34 0.00 0.09 Mn2 3.41 0.04 -0.05 Mn3 3.41 -0.04 -0.05 

 0.00 3.34 0.00  0.04 3.36 0.08  -0.04 3.36 -0.08 

 0.41 0.00 3.95  -0.21 0.36 3.95  -0.21 -0.36 3.95 

            
Mn4 3.34 0.00 -0.09 Mn5 3.41 -0.04 0.05 Mn6 3.41 0.04 0.05 

 0.00 3.43 0.00  -0.04 3.36 0.08  0.04 3.36 -0.08 

 -0.41 0.00 3.95  0.21 0.36 3.95  0.21 -0.36 3.95 

            
O1 -2.01 0.00 0.17 O2 -2.01 0.00 -0.17 O3 -2.06 -0.03 -0.09 

 0.00 -2.08 0.00  0.00 -2.08 0.00  -0.03 -2.03 0.15 

 0.21 0.00 -3.07  -0.21 0.00 -3.07  -0.10 0.18 -3.07 

            
O4 -2.06 0.03 -0.09 O5 -2.06 0.03 0.09 O6 -2.06 -0.03 0.09 

 0.03 -2.03 -0.15  0.03 -2.03 0.15  -0.03 -2.03 -0.15 

 -0.10 -0.18 -3.07  0.10 0.18 -3.07  0.10 -0.18 -3.07 

            
O7 -1.98 0.00 0.16 O8 -1.98 0.00 -0.16 O9 -1.95 0.01 -0.08 

 0.00 -1.94 0.00  0.00 -1.94 0.00  0.02 -1.97 0.14 

 0.17 0.00 -3.21  -0.17 0.00 -3.21  -0.08 0.14 -3.21 

            
O10 -1.96 -0.01 -0.08 O11 -1.96 -0.01 0.08 O12 -1.95 0.01 0.08 

 -0.01 -1.97 -0.14  -0.01 -1.96 0.14  0.02 -1.97 -0.14 

 -0.08 -0.14 -3.21  0.08 0.14 -3.21  0.08 -0.14 -3.21 

            
O13,14 -3.11 0.00 0.00 O15,16 -3.15 0.02 0.00 O17,18 -3.15 -0.02 0.00 

 0.00 -3.11 0.00  -0.02 -3.15 0.00  0.02 -3.15 0.00 

 0.00 0.00 -1.66  0.00 0.00 -1.56  0.00 0.00 -1.56 

Table 4.4 Born effective charges of the ferroelectric YMnO3 calculated within LSDA+U. 

Space group: P63cm. Tensors are reported in cartesian coordinates in atomic units
1
. The 

dynamical charges are * 3.8,YZ  * 3.6,MnZ  
1-12

* -2.4
plO OZ  and 

13-18

* -2.6
apO OZ  defined 

as 
* * * *( ) / 3,i xx yy zzZ Z Z Z  with i - atom. 

                                                

1 The atomic unit of charge is the electron charge. 
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Configurations Observed modes 

x(zz)x  A1(TO) 

x(yy)x  A1(TO) + E2 

x(zy)x  
E1(TO) 

x(yz)x  

y(xx)y  A1(TO) + E2 

y(zz)y  A1(TO) 

y(xz)y  
E1(TO) 

y(zx)y  

z(xx)z  A1(LO) + E2 

z(yy)z  A1(LO) + E2 

z(xy)z  
E2 

z(yx)z  

Table 4.5 Porto notation and Raman-active phonon modes of ferroelectric YMnO3. Space 

group: P63cm. E1(LO) is not active. 

Exciting along in-plane a- or b-axis, the pure A1(TO) symmetry mode is recorded when 

polarization is oriented along the ferroelectric c-axis (configurations x(zz)x  and y(zz)y ), 

both A1(TO) and E2 are observed when the polarization is oriented along one of the in-plane 

axis (configurations x(yy)x and y(xx)y ) and pure E1(TO) mode is observed when the 

polarization is crossed (configurations x(z y,y z)x  and y(x z,z x)y ). Exciting along 

ferroelectric c-axis, the A1(LO) and E2 symmetries are observed when the polarization is 

aligned along one of in-plane axis (configurations z(xx)z  and z(yy)z ) and pure E2 symmetry 

is observed when the polarization is crossed (configurations z(x y,y x)z ). The E1(LO) 

symmetry modes are not visible. We measured all configurations in order to identify and 

assign symmetries precisely. 

4.2.3.2 Miscut of single crystal 

Raman measurements have been performed on a YMnO3 single crystal grown by the standard 

floating zone technique using a four mirror furnace (provided by the group of T. T. M. Palstra 
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in Groningen, for more details concerning the growth can be found in Ref. [43]). The lattice 

parameters determined from the x-ray-diffraction data are the following : a = 6.12 Ǻ and 

c = 11.52 Ǻ. The crystal surfaces were polished in order to reduce the surface roughness and 

thus the light reflection. 

Note that unfortunately our YMnO3 single crystal is miscut. The c-axis is not exactly 

perpendicular to the surface, but tilted by ~ 20° as shown in Figure 4.2. Therefore, we didn‟t 

measure pure A1(TO) and pure E1(TO) symmetry modes, but oblique mode frequencies. For 

E2 modes, the frequencies remain unchanged since the E2 are not polar modes. 

 

 

Figure 4.2 YMnO3 single crystal with c-axis (a) perpendicular to the surface, (b) tilted 

by ~20° to the surface (miscut). 

In order to quantify the effect of the crystal miscut on phonon frequencies, we computed the 

angular dependence of the frequencies that show the evolution from pure TO to pure LO 

phonon modes (Figure 4.3). The red circles at the angle of 0° and 90° mark the TO and LO 

modes of A1 symmetry, respectively. Since A1(TO) is perpendicular to E1(TO), the pure TO 

and LO phonon modes of E1 symmetry are marked at 90 and 0° by blue stars, respectively. 

As mentioned previously, the modes between the pure TO and LO modes are the oblique 

modes that mix LO and TO frequencies. The main difficulty is that there is no a one to one 

correspondence between TO and LO modes. To get Figure 4.3, we had to explicitly 

diagonalize the dynamical matrix  ( 0)D q  including the appropriate nonanalytical 
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electrostatic contribution 
nan

(q 0)D  (computed from *Z  and ) and approaching 0q  

along each  (between 0° and 90° with a step of 1°) orientation [58]: 

an nan

, ' , ' , '( 0) ( 0) ( 0),D D Dq q q                              (4.1) 

where the nonanalytical term can be written as: 

* *
nan , ' ' , ' ''

, '

0 ' ' ' '' '

( )( )4
( 0) .

Z q Z q
D

q q
q                                (4.2) 

In Figure 4.3, the red circles at 20° show the oblique modes with the dominant A1 symmetry. 

The blue stars at 70° (miscut angle of 20° respect to pure E1(TO) modes) show the oblique 

modes with the dominant E1 symmetry. 

 

 

Figure 4.3 Angular dependence of phonon A1 and E1 modes of ferroelectric YMnO3. Space 

group: P63cm. Phonon frequencies (cm
-1

) of A1 and E1 symmetry modes are marked at 

specific angles by red dots and blue stars, respectively. 

In order to determine the dominant A1 or E1 character of modes at the crystal miscut angle, we 

computed the overlap ij  of eigenvectors TO

i  of TO phonon modes with eigenvectors j  of 
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oblique modes at the crystal misorientation angle (  |  TO

ij i j
). Then, we deduced the 

total overlap 1

1

2
A 2

A

j ij

i

 of oblique modes at 20° with A1(TO) modes and, respectively, 

the total overlap 1

1

2
E 2

E

j ij

i

 of oblique modes at 70° with E1(TO) modes. When 

1 1A E

j j , the dominant A1 character was attributed to oblique mode and vice versa. 

We observe that the angular dependence is very weak meaning that the oblique frequencies 

measured on the miscut crystal are good estimate of pure TO and LO frequencies. The 

angular dependence of the frequencies of A1(TO7) and A1(TO8) symmetry modes at 498 cm
-1

 

and 593 cm
-1

 is more significant, but we don‟t observe these modes in our Raman spectra. 

Note that the dominant A1 or E1 character for these two modes is not well defined (see 

Appendix A). In the following, we limit our discussion to the TO frequency modes. 

4.2.3.3  Experimental Raman spectra 

Figure 4.4 shows the plot of selected configurations that were recorded at room temperature. 

The following configurations y (z x) y , y (z z) y and z (x y) z  were chosen because they 

allow to observe independently E1(TO), A1(TO) and E2 modes. The configuration y (x x) y

was added for the purpose of showing the sum of A1(TO) and E2 modes and thus illustrating 

the method of identification. The modes that are forbidden in a noted configuration, but are 

nevertheless observed because of i) polarization leakage, ii) disorientation of crystal are 

marked by stars. It usually happens for intense peaks: for instance, the most intense A1 mode 

appears in all spectra. The lines in Figure 4.4 represent the LSDA+U data. As can be seen, the 

calculated positions match well the measured peaks. The comparison is plotted between 

spectra taken at room temperature and values computed at 0 K thus the majority of calculated 

frequencies are positioned at higher frequencies than those measured. At low temperature, the 

experimental peaks shift by few reciprocal centimeters to higher frequencies, slightly 

improving the matching between calculated and experimental data. These spectra globally 

match previously published spectra and also supplement them with the identification of one 

additional mode at a frequency of 247 cm
-1

, as it will be discussed later. 
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Figure 4.4 Raman spectra of YMnO3 (P63cm) single crystal at room temperature. Each 

configuration represents the allowed symmetries: E1(TO), A1(TO), E2, A1(TO) + E2. The 

appearing forbidden symmetries are marked by stars: E2*, A1(TO)** in spectrum (1); 

E1(TO)* - (2), A1(LO)* - (3). The positions of A1(TO) and E2 modes in spectrum (4) are 

noted in red color (italic) and blue color, respectively. The drawn lines represent the 

computed frequencies within LSDA+U. 

te
l-0

08
70

83
6,

 v
er

si
on

 1
 - 

8 
O

ct
 2

01
3



67 

          
 LSDA+U Experiment 

Mode 0° 20°  RT RT [54] RT [59] 10K [59] 15K [60] 10K [57] 

A1(TO1) 170 170 

 

 153 148 151 161 160 (154) 

A1(TO2) 252 253   190 241 244 210  

A1(TO3) 272 272  258 257(265) 259 264 264 (235) 

A1(TO4) 313 312  301 297 300 307  (260) 

A1(TO5) 428 428  430 (398) 431 434  (304) 

A1(TO6) 460 460  460 433(428) 461 467 435 (432) 

A1(TO7) 498 481   459   466 (486) 

A1(TO8) 593 530   (612)    (562) 

A1(TO9) 691 691  684 681 683 686 686  

          E1(TO1) 171 171        

E1(TO2) 183 183       (162) 

E1(TO3) 211 212        

E1(TO4) 245 245  240 (211)    (207) 

E1(TO5) 274 283   (238)   247 (249) 

E1(TO6) 302 304   (281)    (299) 

E1(TO7) 367 373  356 (308) 354 361 360 (380) 

E1(TO8) 379 380  375 376   377 (400) 

E1(TO9) 403 403  404 408   420 (416) 

E1(TO10) 419 420  416 (457)     

E1(TO11) 459 459   (491)   509  

E1(TO12) 489 489  479      

E1(TO13) 622 622   (596)    (594) 

E1(TO14) 644 644  636 632 631 637 638  

          E2(1) 102         

E2(2) 145   139      

E2(3) 184    135   141  

E2(4) 210   208      

E2(5) 243   224 215  223 231 225  

E2(6) 261   247      

E2(7) 314   306    307  

E2(8) 350    302 356 357 331  

E2(9) 376       406  

E2(10) 398       444  

E2(11) 440   439  439 441 483  

E2(12) 455         

E2(13) 490         

E2(14) 623         

E2(15) 643   641    647  

Table 4.6 Zone-center Raman-active TO phonon frequencies (cm
-1

) at 0° and miscut angle of 

20° of P63cm ferroelectric YMnO3 calculated from first-principles in comparison to Raman, 

infrared (in brackets) data obtained at room and low temperature. 
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4.2.4 Discussion 

Table 4.6 reports the YMnO3 TO phonon frequencies with A1, E1 and E2 symmetries, 

calculated within LSDA+U in comparison to experimental values. As can be seen, the 

calculated frequencies correspond well to the experimental values. However, disagreements 

appear in assigning the modes. The attempts of Iliev et al. to support the assignment of 

experimentally observed Raman and infrared peaks using a shell model are reasonably good, 

but not always very accurate. In the following, we discuss the modes of each symmetry 

independently and propose a reassignment of certain modes. Note that in Table 4.6 our own 

experimental data are listed according to the assignment deduced from comparison with our 

first-principles calculations while the experimental data are listed as in their original work, 

according to the assignment they made on the basis of their semi-empirical calculations. 

There are 9 Raman and infrared-active A1 symmetry modes. The literature provides all their 

frequencies. However, our first-principles data question the assignment of the room 

temperature (RT) experimental frequencies at 398 cm
-1

 (IR)
 
, 433 cm

-1
 (428 cm

-1
, 432 cm

-1
, IR 

and 435 cm
-1

, 15 K) and 459 cm
-1

 (466 cm
-1

, 15 K). A better correspondence with first-

principles calculations and measured values is achieved when the modes recorded using 

Raman technique at 433 cm
-1

 (432 cm
-1

, IR and 435 cm
-1

, 15 K) and 459 cm
-1

 (466 cm
-1

, 

15 K) and initially assigned to A1(TO6) and A1(TO7), are attributed to A1(TO5) and A1(TO6). 

It is tempting also to assign the IR mode at 428 cm
-1

 to A1(TO5) but, then, the presence of 

another IR mode at 398 cm
-1

 is questionable. Supplementary measurements are certainly 

needed to further clarify the assignment of these modes. 

In the literature, 11 frequencies out of 14 existing E1 symmetry modes have been 

experimentally reported. As discussed below, the reassignment in view of first-principles 

calculations increases the number of recorded modes to 13. The RT frequencies at 211 cm
-1

 

(207 cm
-1

, IR), 238 cm
-1

 (247 cm
-1

, 15 K and 249 cm
-1

, IR), 281 cm
-1

 and 308 cm
-1

 initially 

assigned to the modes from E1(TO4) to E1(TO7), respectively, clearly match better with our 

calculated and measured values from E1(TO3) to E1(TO6); this further removes the apparent 

disagreement between the frequencies initially proposed at RT and 15 K for E1(TO7). In 

addition, we suggest that the modes observed at 10 K in the infrared measurements at 

te
l-0

08
70

83
6,

 v
er

si
on

 1
 - 

8 
O

ct
 2

01
3



69 

380 cm
-1

 and 400 cm
-1

 better match with E1(TO8) and E1(TO9) than E1(TO7) and E1(TO8). The 

frequency measured at 15 K at 420 cm
-1

 (416 cm
-1

, IR) should be assigned to E1(TO10) rather 

than to E1(TO9). Then, we finally propose to assign the observed modes at 457 cm
-1

 and 

491 cm
-1

 (509 cm
-1

, 15 K) to E1(TO11) and E1(TO12), respectively, rather than to E1(TO10) and 

E1(TO11) as initially proposed by Iliev et al and Fukumura et al. 

The list of registered E2 symmetry modes is more sparse. The reassignment with respect to 

our first-principle data extents this list from 8 to 10 known frequencies, out of the 15 existing 

ones. The experimentally registered modes at RT at 135 cm
-1

 (141 cm
-1

, 15 K), ~ 215 cm
-1

 

and at 15 K at 406 cm
-1

, 444 cm
-1

 and 483 cm
-1

 fit well the E2(2), E2(4), E2(10), E2(11) and 

E2(13) calculated and measured frequencies, respectively. The experimental mode measured 

at RT by Iliev et al. at 302 cm
-1

 and assigned to E2(8) and measured at 15 K by  

Fukumura et al at 307 cm
-1

 and assigned to E2(7) corresponds to our calculated and measured 

E2(7) mode, thus rather confirming the assignment of Fukumura et al. Our measured mode at 

a frequency of 247 cm
-1

 and assigned to E2(6) is a newly observed mode. 

4.3 Paraelectric phase P63/mmc 

There are 30 zone-center phonon modes in the hexagonal P63/mmc paraelectric phase of 

YMnO3 that can be classified into:  = A1g  E1g  3E2g  4A2u  4E1u  3B2g  2B1u  

2E2u [55]. The A1g, E1g and E2g are Raman-active, A2u and E1u are infrared-active and B2g, B1u 

and E2u are silent modes (Table 4.7). The acoustic modes A2u and E1u are set to zero by 

applying the acoustic sum rule. The E modes are doubly degenerated. The paraelectric 

structure of YMnO3 is centrosymmetric thus the Raman- and infrared-active modes are 

separated. 

Table 4.8 summarizes the zone-center phonon frequencies of YMnO3 calculated from first 

principles within LSDA+U in comparison to empirical and experimental values. Note that the 

experimental data of Fukumura et al. [60] are listed as in their original work, according to the 
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assignment based on the semi-empirical calculations. To the best our knowledge, there are no 

previous density functional calculations in the literature. 

 

Raman = A1g  E1g  3E2g 

infrared = 3A2u  3E1u 

silent = 3B2g  2B1u  2E2u 

acoustic = A2u  E1u 

Table 4.7 Classification of the zone-center phonon modes of P63/mmc into Raman-, infrared-

active, silent and acoustic modes. 

The phonon frequencies determined using a shell model match reasonably well the first-

principles data, but are less accurate. The frequencies of E2g(2), E1u(3) and E2u(2) modes are 

highly overestimated and underestimated, respectively. 

The calculated frequencies are in good agreement with the experimental values. 

Experimentally, 4 of 5 frequencies of phonon modes are observed. The mode measured at a 

frequency of 395 cm
-1

 is assigned to E2g(2) mode with respect to semi-empirical 

calculations. Our first-principles calculations show a closer match with the E2g(3) mode. 

The zone-center phonon frequencies of P63/mmc paraelectric phase of YMnO3 do not show 

any structural instability although the ground structure of YMnO3 is the ferroelectric P63cm 

phase. This confirms that YMnO3 is not a proper ferroelectric. Instead, the condensation of 

the polar distortion is driven by an unstable mode at K 
1 1

(   0)
3 3

. In order to access to the 

frequencies at K-point, we computed the zone-center phonons of the P63/mmc in the triple 

paraelectric unit cell. 

The zone-center calculations of the P63/mmc triple paraelectric phase give the frequencies at 

the zone-center -point (0 0 0) and zone-boundary K-point 
1 1

(   0)
3 3

. There are 30 phonon 

modes at -point (classified as in Table 4.7) and 30 phonon modes at K-point that can be 
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classified into : K = 2K1  2K2  3K3  3K4  6K5  4K6 [55]. The K5 and K6 modes are 

doubly degenerated. 

 

Mode LSDA+U SM [54] 1100K [60] 

A1g 713 666 664 

E1g 440 402 420 

E2g(1) 143 107 120 (?) 

E2g(2) 249 395 395 

E2g(3) 456 498  

A2u(1) 88 170  

A2u(2) 411 389  

A2u(3) 593 594  

E1u(1) 165 121  

E1u(2) 255 239  

E1u(3) 392 496  

B2g(1) 166   

B2g(2) 394   

B2g(3) 791   

E2u(1) 108 83  

E2u(2) 367 244  

B1u(1) 193   

B1u(2) 701   

Table 4.8 Zone-center phonon frequencies (cm
-1

) of P63/mmc paraelectric YMnO3 calculated 

from first principles in comparison to shell model (SM) calculations and experimental values 

obtained at 1100 K. 

The Table 4.9 shows the zone-center phonon frequencies of the P63/mmc triple paraelectric 

phase of YMnO3 calculated from first principles. The frequencies of the triple cell at 

-point (0 0 0) differ by only a few reciprocal centimeters from the frequencies calculated for 

the simple cell (see Table 4.8); this is a consequence of the different k-point sampling in both 

calculations and bring to light the level of convergence of our calculations. The calculations 

reveal two instabilities at K-point: 3K  mode at a frequency of 153i cm
-1

 and 4K  mode at a 
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frequency of 14i cm
-1

. The unstable 
3K  mode is the primary mode condensing at the 

ferroelectric phase transition. Our frequency of 3K  mode is identical to that calculated by 

Fennie and Rabe [16]. 

 

Mode (0,0,0)  Mode K

1 1
 ( , ,0)

3 3
 

A1g 712 K1(1) 266 

E1g 438 K1(2) 533 

E2g(1) 145 K2(1) 215 

E2g(2) 246 K2(2) 529 

E2g(3) 454 K3(1) 153i 

A2u(1) 85 K3(2) 228 

A2u(2) 410 K3(3) 407 

A2u(3) 593 K4(1) 14i 

E1u(1) 167 K4(2) 265 

E1u(2) 253 K4(3) 402 

E1u(3) 391 K5(1) 182 

B2g(1) 165 K5(2) 249 

B2g(2) 393 K5(3) 372 

B2g(3) 791 K5(4) 447 

E2u(1) 106 K5(5) 483 

E2u(2) 365 K5(6) 656 

B1u(1) 192 K6(1) 213 

B1u(2) 701 K6(2) 296 

  K6(3) 417 

  K6(4) 647 

Table 4.9 LSDA+U zone-center phonon frequencies (cm
-1

) of the P63/mmc triple paraelectric 

YMnO3. 
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4.4 Improper ferroelectric 

As described in Chapter 1, YMnO3 is indeed an improper ferroelectric. The ferroelectric 

phase transition from the P63/mmc paraelectric phase to the P63cm ferroelectric one 

essentially arises from the condensation of an unstable 
3K  zone-boundary mode (153i cm

-1
), 

driving the concomitant condensation of a stable 
2
 polar zone-center mode (90 cm

-1
), which 

linearly couples with it [16]. Consistently with them, we observe in the paraelectric P63/mmc 

phase, an unstable 3K  mode at a frequency of 153i cm
-1

 and a stable, but low frequency 
2
 

mode at a frequency of 85 cm
-1

, that are together responsible for 99% of the structural 

distortion yielding the P63cm ferroelectric phase. Restricting ourselves to the two-dimensional 

subspace defined by these relevant phonon modes, and based on the energy landscape 

reported by Fennie and Rabe, we can estimate
2
 that these modes will be stabilized by 

anharmonicities to higher frequencies in the ferroelectric phase, giving rise to phonon modes 

at 224 cm
-1

 for 3K  and 302 cm
-1

 for 2 . 

In order to test this „‟2-phonons‟‟ model and identify to which phonons these frequencies are 

associated, we made the overlap between the phonon eigendisplacements of the P63cm phase 

and the relevant 3K  and 2  mode eigendisplacements of the P63/mmc phase condensing at 

the phase transition.
3
 On the one hand, we observed that the 3K  mode of the paraelectric 

phase mainly overlaps with the A1(TO1) mode at 170 cm
-1

 (0.73) and the A1(TO6) mode at 

460 cm
-1

 (0.46) of the ferroelectric phase. On the other hand, we obtained that the 2  mode of 

the paraelectric phase mainly overlaps with the A1(TO2) mode at 252 cm
-1

 (0.62) and the 

A1(TO4) mode at 313 cm
-1

 (0.65) of the ferroelectric phase. Therefore, there is no one-to-one 

correspondence between the phonons of the paraelectric phase condensing at the phase 

                                                

2 The frequencies were determined from the curvature of the model energy along 
3K  and 

2
 directions of the 

global minimum associated to the ferroelectric ground state. 

3 The overlap  is defined as 
3 2

FE PE

K ,
  < | |  M  and listed in the appendix B. 
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transition and the phonons of the ferroelectric phase, but the 
3K  and 

2
 modes can be linked 

to the low frequency A1 modes of the ferroelectric phase. 

4.5 Conclusions 

We reported the zone-center phonon frequencies of hexagonal YMnO3. 

First, we reported the TO and LO phonon frequencies at -point calculated from first 

principles using LSDA+U and B1-WC functional of the P63cm ferroelectric phase of YMnO3. 

The obtained values using both theoretical approaches agreed well with each other, except the 

low frequency modes, where the difference was more significant. Then, we reported our 

measured Raman spectra at room temperature of YMnO3 single crystal. The angular 

dispersion curves of oblique phonon modes didn‟t show a strong LO-TO mode splitting thus 

the misorientation of c-axis of our crystal didn‟t influence the assignment of modes. The 

correspondence with our measured as well as the experimental values available in the 

literature was very good. However, disagreements appeared in assigning modes since the 

empirical prediction used to label the modes was clearly not sufficiently accurate. Thus, our 

proposed reassignment of certain modes with respect to the first-principles calculations and 

our measured frequencies increased the number of known modes from 28 to 32 out of 38 

Raman-active phonon modes. One of these modes was our newly observed E2 symmetry 

mode at a frequency of 247 cm
-1

. Our calculated Born effective charges within LSDA+U 

were slightly larger than the nominal values and were in good agreement with the 

experimentally obtained values. 

Next, we reported the first-principles phonon frequencies at -point using LSDA+U of the 

P63/mmc paraelectric phase of YMnO3. The correspondence with the values calculated using 

a semi-empirical approach was good, although the inaccuracies were present since this 

approach was less reliable than the first-principles calculations. The calculated values 

matched well the available experimental data. We proposed a reassignment of one mode with 
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respect to our calculated values. We reported the zone-center frequencies of the P63/mmc 

in-plane triple cell. Two instabilities at K-point were obtained. 

Last, we discussed the ferroelectric phase transition from the high-temperature paraelectric to 

ground ferroelectric phase. We identified the low frequency A1 symmetry modes of the 

ferroelectric phase that strongly overlap with the 
3K  zone-boundary at a frequency of 

153i cm
-1

 and 
2
 polar zone-center at 85 cm

-1
 modes of the paraelectric phase condensing at 

the phase transition. 
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  Chapter 5

 

First-principles based model energy 

for epitaxial YMnO3 thin films 

During the recent years, the tuning of the ferroelectric properties in thin films has been a topic 

of intensive researches. In particular the role of the mechanical and electrical boundary 

conditions on the ferroelectric properties of epitaxial films has been widely discussed and now 

is well understood. These studies quasi exclusively focused on proper ferroelectric oxides of 

cubic perovskite structure. In contrast, very little is known about the role of epitaxial strain on 

hexagonal perovskites and the role of the electrical boundary conditions on improper 

ferroelectrics. 

Fennie and Rabe developed a simple model based on first-principles calculations to describe 

the ferroelectric properties [16]. This model properly includes the relevant ionic degrees of 

freedom, but without treating explicitly the strain. In the present study we generalize such a 

model in order to be able to treat explicitly the role of the mechanical constraints such as 

epitaxial strain. Taking advantage of recent study developments, we also include a term 

describing correctly electrostatic boundary conditions from open-circuit to short-circuit 

including the case of imperfect screening. 
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5.1 Relevant ionic degrees of freedom 

In order to identify the relevant ionic degrees of freedom, first, we determined the atomic 

distortion vector  that relates the ferroelectric P63/cm and paraelectric P63/mmc phases of 

YMnO3. Table 5.1 shows the  computed within LSDA+U. In order to properly decouple the 

ionic and strain degrees of freedom, the distortion vector was determined in reduced 

coordinates. Nevertheless, since this vector will be compare to phonon eigendisplacements of 

the paraelectric phase expressed in cartesian coordinates,  was converted in cartesian 

coordinates using the lattice parameters of the triple paraelectric phase. 

 

Atom 
 (Å)

 

x  z  

Y1 0 0.2801 

Y2 0 -0.2078 

Mn 0.0011 0.0013 

Oap1 -0.1673 -0.0290 

Oap2 0.1624 -0.0325 

Opl3 0 -0.2619 

Opl4 0 0.2271 

Table 5.1 Atomic distortions  (Å) along [100] (in-plane axis) and [001] (polar axis) of 

paraelectric YMnO3, respectively. Space group: P63cm, from centrosymmetric positions, 

Space group: P63/mmc. 

Then, we normalized the distortion 
normA  (the norm A 6.32 ) and we made an 

overlap i  between the atomic distortion vector 
norm

 and phonon eigendisplacement vectors 

of paraelectric phase i  of modes i  defined as norm  < | |  i i M  such that 2 1,i
i

 

where M  is the standard atomic weight. Table 5.2 lists the most significant contributions i  

to the atomic distortions. Note that we considered the contributions 0.01%i . 
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3K

 

 
2

 

 +

1Γ  
 

1K
 

ω (cm
-1

)  153i 228 407  85 410 593  712  266 533 

i
 -0.967 0.162 -0.062  0.175 -0.003 0.001  -0.067  -0.002 0.006 

Table 5.2 Frequencies  and contributions 
i
 of modes i to the atomic distortion vector from 

the ferroelectric P63cm to paraelectric P63/mmc phase of YMnO3. Space group: P63/mmc. 

As we can see in Table 5.2, only 9 amongst the 90 phonon modes contribute to the 

ferroelectric distortion: four modes - 
2
 (label A2u(1) in Chapter 4) at the frequencies of 

85 cm
-1

, 410 cm
-1

, 593 cm
-1

 and +

1Γ  (label A1g in Chapter 4) at a frequency of 712 cm
-1

 - are at 

the zone-center and five modes - 3K  at the frequencies of 153i cm
-1

, 228 cm
-1

, 407 cm
-1

 and 

1K  at the frequencies 266 cm
-1

, 533 cm
-1

 - are at the zone-boundary. The most significant 

contributions -0.967 and 0.175 are those of the unstable 3K  mode at a frequency of 153i cm
-1

 

and the stable 
2
 mode, at a frequency of 85 cm

-1
, respectively. This confirms that the 

ferroelectric transition mainly comes from the condensation of 3K  and 2  in the paraelectric 

phase [16]. However, as it will be further discussed later the inclusion of these only two ionic 

degrees of freedom is not sufficient to properly account of the strain relaxation, which 

requires the additional explicit treatment of the coupling with 1
+
 mode at a frequency of 

712 cm
-1

 even if the contribution is small (
1

0.067 ). Finally, contrary to what was first 

expected by Aken et al. [15], the contributions of 1K  modes are negligible. 

Once we identified the relevant phonon modes, we constructed an atomic distortion vector 

model
 as a sum of contributions i  of modes i limited to the relevant modes (Table 5.3). 

Since different 3K  and 2  contribute to the distortion, we defined a combination of modes i  

such that  

3 2 1

model

KA ,i i
                                     (5.1) 
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where 
3K
, 

2

 and 
1

 are the combined distortion amplitudes of relevant 
3K ,  

2
 and 

1
 

modes, respectively, that are 

3 3 3 3K K K KA ( 0.967 (153 ) 0.162 (228) 0.062 (407)),i                  (5.2) 

2 2 2 2

A (0.175 (85) 0.003 (410) 0.001 (593)),                     (5.3) 

1 1 

A ( 0.067 (712)).                                             (5.4) 

The advantage to construct the atomic distortion vector using the phonon eigendisplacements 

is the possibility at any moment to extend the model including additional degrees of freedom 

with no influence on the previous results. The alternative way is to decompose the atomic 

distortions ,  obtained from atomic positions (see Table 5.1), into the symmetry-adapted 

modes [16]. 

 

Atom model ( , ) (Å)x z  
3K ( , ) (Å)x z  

2

( ) (Å)z  
1

( ) (Å)z  

Y1 0 0.2950 0 0.3252 -0.03025 0 

Y2 0 -0.1929 0 -0.1626 -0.03026 0 

Mn 0 0.0162 0 0 0.0162 0 

Oap1 -0.1649 -0.0141 -0.1649 0 0.0167 -0.0308 

Oap2 0.1649 0.0474 0.1649 0 0.0167 0.0308 

Opl3 0 -0.2469 0 -0.3260 0.0791 0 

Opl4 0 0.2421 0 0.1630 0.0791 0 

Table 5.3 Atomic distortion vector 
model

 decomposed into amplitudes of relevant phonon 

modes 3K (153 ),i  2 (85)  and 1 (712)  of paraelectric YMnO3. Space group: P63/mmc. 

As we can see in Table 5.3, the inclusion of 7 amongst the 90 modes reproduce well the 

atomic distortion vector  (Table 5.1): the correspondence is within 1.5 % and 7 % along 

x- and z-axis, respectively. The atomic distortions of the apical oxygen atoms Oap1 and Oap2 
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along z-axis differ more, but the included 
1

 mode imposes the correct distortion direction - 

opposing displacements along the ferroelectric z-axis (Figure 5.1). We don‟t treat well the 

position of manganese atom Mn in ab plane because our approximation doesn‟t include 
1K  

mode, which is associated to the motions of apical oxygen atoms Oap1 and Oap2 and 

manganese atom Mn in ab plane (Figure 5.1). The atomic distortion of Mn atom 

(Table 5.4) is by two orders of magnitude smaller than the distortions of other atoms 

(Table 5.3) thus the contribution of this mode is negligible. 

 

 

Figure 5.1 Schematic view of the MnO5 triangular bipyramids surrounded by Y layers and 

corresponding measured atomic positions, when 1  (b) and 1K  (c) distortions are frozen in 

the paraelectric phase of YMnO3 (a). The numbers give the bond lengths in Å. The arrows 

indicate the directions of the atomic displacements with respect to the centrosymmetric 

structure. 

The atomic distortion of the 3K  mode, listed in Table 5.3 and illustrated in Figure 5.2, is 

associated to displacements with the biggest amplitude compare to those of other modes. This 

mode is associated to the rotations of MnO5 triangular bipyramids maintaining the Mn-O 
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atomic distances and Mn atoms at the center of the oxygen bipyramids and the displacements 

of Y atoms approaching the in-plane O atoms (see Figure 5.2). The 
3K  mode is non-polar as 

the displacements of Y1 and in-plane O atoms are compensated by the opposing 

displacements of two Y2 and two in-plane O atoms along z direction, respectively 

(see Table 5.3). Equally, the opposing displacements of apical O atoms compensate each 

other along x direction. 

 

Atom 
1K ( ) ( )x Å  

Y1 0 

Y2 0 

Mn 0.0011 

Oap1 -0.0025 

Oap2 -0.0025 

Oap3 0 

Oap4 0 

Table 5.4 Distortion amplitude (Å) of 1K  modes along [100] (in-plane axis) and [001] 

(polar axis) of paraelectric YMnO3, respectively. The distortions were estimated as follows 

1 1 1K K KA ( 0.002 (266) 0.006 (533)).
 

As can be seen in Table 5.3, the 2  mode is polar and is associated to atomic displacements 

along z direction. These displacements are shown in Figure 5.2. The MnO5 bipyramids move 

in opposite direction to that of the planes of Y atoms. The displacements do not compensate 

each others and lead to a ferroelectric polarization along z direction. Similarly to the 

displacements associated to the 3K  mode, when 2  mode is condensed into the paraelectric 

structure of YMnO3, the Y-O bond length gets shorter, while the Mn-O atomic distance 

remains unchanged. 
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Figure 5.2 Schematic view of MnO5 triangular bipyramids surrounded by Y layers and 

correspondent measured atomic positions, when 3K  (b) and 
2
 (c) distortions are frozen in 

the paraelectric phase of YMnO3 (a). The numbers give the bond length in Å. The arrows 

indicate the directions of the atomic displacements with respect to the centrosymmetric 

structure. 

5.2 First-principles based model energy 

Since only few phonon modes are involved in the ferroelectric phase transition of YMnO3, we 

now construct a model that consists in a Taylor expansion of the internal energy U (limited to 

low orders, in eV / formula units) around the paraelectric phase (taken as a reference) in terms 

of the relevant ionic and strain degrees of freedom (Eq. 5.5). 

In the model, 
3KQ , 

2

Q  and 
1

Q  represent the amplitudes of the atomic distortions 
3K , 

2

 

and 
1

 that have been frozen. By construction, the ferroelectric ground state corresponds to 

3 2 1
K 1Q Q Q . The polynomial invariants were generated using the ISOTROPY 

software [61]. 
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3 3 2 2 1 1

3 3 31 1 2 2 1

3 1 2 1 2

2 4 2 4 2

K K

3 4 3 2 2 2

K K K

2 2 2 2

K

1.450 1.138 0.0193 0.0004 0.0010 0.1710

0.0055 0.0009 0.462 0.217 0.1022

0.0083 0.0062 0.0026

U Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q
1

3 3 3 3 3 3

3 3

2

2 2 3 3 2 2

2 2 2 4 2 2 2 4

K K K K K K

2 4

K K

     

973 445 487 3313 1843 1630 160

     

10.02 88 2.37 2.39 66 5.35

+1.06 +19.1

0.481

a c a c a c a c a c

a a a c c c

a c a c

Q

Q Q Q Q Q Q

Q Q

2 2 2 2

1 1 1 1 1 1

1 1 1 1

2 4 2 4

23 43

2 2 2 2 3 4

31 41

2 2 3

33 43

0.082

       

5.377 30.8 0.302 1.2

9.31 56.9 0.71

a a c c

a a a a a a

c c c c c

Q Q Q Q

Q Q Q Q Q Q

Q Q Q Q
1

3 3 3 32 2 2 2

3 3 3 31 1 1 1

3 1

2 1

4

3 2 2 3 2 2

K K K K

2 2 2 2 2 2

K K 221 K K

2 2

223 K

2

211 221

+0.69 0.267 2.57 1.33

0.659 4.5 0.878

a a c c

a a a c

c

a

Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q

Q Q
2 1 2 1 2 1

2 2 2 2 2

213 223 .a c cQ Q Q Q Q Q

 

(5.5) 

The values of polynomial coefficients are the first-principles fitting parameters and were 

obtained independently from the systematic total energy calculations. We computed the 

1 

2 

3 
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energy potentials by freezing the amplitudes of the atomic distortions 
3K
, 

2

 and 
1

 to 

reference paraelectric structure in a range of [-1, 1] with step of 0.25 fractional units. The 

obtained energy potentials were fitted with the 4
th

 order polynomial function. The effect of the 

epitaxial strain to 
3K , 

2
 and 

1
 modes was estimated in the range of [-3%, 3%] with step  

of 1%. We considered that the coefficients were negligible when the change of total energy 

was of the order of the calculations error of 1 meV. Note that the negligible terms in (5.5) are 

delineated by full line rectangles. The model construction required a big number of about 

2000 calculations to be performed and treated. The detailed description and the energy 

potential curves for each coefficient are given in Appendix C. 

In the following, we discuss the related terms delineated by dashed-line rectangles numbered 

from 1 to 3. 

The terms in the first dashed-line rectangle form the core of our model. They define the 

energy potentials of individual 3K ,  
2
 and 

1
 modes (

3K ,Q  
2

,Q  
1

,Q  respectively) and 

coupling between each others: 3K  and 
2 ,  3K  and 

1 ,  2
 and 

1
 modes (

3 2
K ,Q Q  

3 1
KQ Q  

and 
2 1

,Q Q  respectively). 

As expected, the coefficient of 
3

2

KQ  is negative, which is coherent with the mode instability. 

The coefficient of 
2

2Q  is positive and is renormalized by the positive biquadratic coupling 

coefficient between 3K  and 2 . This means that the 3K  mode doesn‟t tend to decrease the 

stability of 2  mode. Rather it shifts the 2  mode to a nonzero equilibrium position (see in 

Appendix Figure C.4, [16]) through the term 
3 2

3

KQ Q . It is the linear coupling of the unstable 

non-polar 3K  mode with the stable polar 2  mode that results in a finite polarization in the 

ferroelectric P63cm phase. 

The coefficient of 
1

2Q  is positive, but the coupling coefficient between 3K  and 1  is 

negative meaning that the unstable non-polar 3K  mode also couples with the stable non-polar 

1 mode. The coupling coefficients of 
3 1

2

KQ Q  and 
3 1

2 2

KQ Q  renormalize the coefficients of 
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1

Q  and 
1

2 .Q  They are negative meaning that 
3K  tends to decrease the stability of 

1 .  We 

neglected the mode coupling term 
3 1

2 2

KQ Q  as the dependence in the coefficient curve (see in 

Figure C.6 in Appendix C) is linear. 

The coupling between 
2
 and 

1
 modes is weak as the value of coupling coefficient of 

2 1

2Q Q  is small. 

We extended our model with the macroscopic strain degrees of freedom (dashed-line 

rectangle 2 and 3) in order to study the epitaxial YMnO3 thin films under the imposed 

mechanical boundary conditions – epitaxial strain imposed by the substrate. 

The expansion of elastic energy in terms of the in-plane a  and out-of-plane strain c  for the 

hexagonal structure (since the lattice parameters a = b, we imposed a xx yy ) is shown 

in the second rectangle. We expended the energy till the third order to treat the asymmetry 

appearing from the different responses to compressive and tensile strain (see in Appendix C 

Figure C.10). As expected the system is more sensitive to compressive in-plane strain. The in-

plane compression results in out-of-plane expansion that favors the ferroelectricity. 

The terms in the third dashed-line rectangle define the response to applied strain of individual 

3K ,  2  and 1  modes (
3, K ,a cQ  

2
,a cQ  and 

1
,a cQ , respectively) and mode coupling terms 

(
3 2

, K ,a cQ Q  
3 1

, Ka cQ Q  and 
2 1

,a cQ Q ). 

Both 3K  and 1  modes significantly couple with strain while the coupling of 2  mode with 

in-plane strain is weak and with out-of-plane strain is negligible (terms 
2

2

cQ  and 
2

4

cQ ). As 

follows, the strain mode coupling terms of 3K  and 2 , 3K  and 1  modes give a contribution 

to strain relaxation while the mode coupling terms of 2  and 1  modes are negligible. Note 

that the high order terms of 1  mode (
1

3

aQ , 
1

4

aQ , 
1

3

cQ  and 
1

4

cQ ) and mode coupling 

terms of 3K  and 1  modes (
3 1

2 2

KaQ Q  and 
3 1

2 2

KcQ Q ) are negligible. This suggests that the 
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atomic distortions of 
1

 mode are induced via the coupling of 
3K  mode with strain since 

3K  

couples stronger with strain than 
1 .

 

5.3 Ground state of bulk YMnO3 

As a first step, we verified to which accuracy our model (Eq. 5.5) can reproduce the 

ferroelectric ground state of YMnO3. We minimized the energy expansion (Eq. 5.5) in terms 

of the relevant 3K , 
2
 and 

1
 mode amplitudes 

3K ,Q  -
2

Q  and 
1

Q , respectively, in-plane 

a  and out-of-plane strain c  to know whether in freezing our chosen degrees of freedom to 

P63/mmc paraelectric high-temperature phase, we go down to the P63cm ferroelectric ground 

state of YMnO3. Then, we calculated the total energy E and the ferroelectric polarization 0P  

(Eq. 5.8) at the minimum. Table 5.5 lists the energy minimum and related distortion 

amplitudes of our model (Model 0) in comparison to the first-principles calculations 

performed within LSDA+U for the ferroelectric phase of YMnO3 (ab-initio). We also 

consider 8 alternative models excluding certain terms. 

As we can see in Table 5.5, our model (Model 0) properly reproduces the bulk ferroelectric 

ground-state (ab-initio): the mode amplitudes, energy and polarization agree within 3 % and 

the strain values within 10 %. 

In the following, we explore the influence of certain terms excluding them from the model in 

order to understand better their role. First, we analyze the necessity to include the 1  mode. 

If we exclude the 1  mode, the model doesn‟t treat well the strain relaxation (see Model 1 in 

Table 5.5). The values of the in-plane a  and out-of-plane strain c  are almost twice smaller 

than the ones obtained from ab-initio calculations, the mode amplitudes, energy and 

polarization are reproduced less precise within 13 %. Thus, the 1  mode is necessary to 

properly account for the strain relaxation. 
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3KQ
 

-
2

Q
 1

Q
 

 (%)a
  (%)c

  (eV)E  
2

0  ( C/cm )P
 

ab-initio 1.000 1.000 1.000 -1.19 2.07 -0.706 7.51 

Model 0 1.007 0.974 0.999 -1.31 2.23 -0.712 7.31 

Model 1 0.931 0.888 0 -0.61 0.86 -0.612 6.66 

Model 2 0.942 0.906 0.276 -0.62 0.89 -0.625 6.80 

Model 3 1.012 1.002 1.017 -1.36 2.28 -0.715 7.52 

Model 4 1.039 1.003 1.117 -1.46 2.63 -0.738 7.53 

Model 5 0.905 0.876 0.368 -0.17 0.36 -0.588 6.57 

Model 6 0.938 0.902 0.245 -0.60 0.85 -0.622 6.77 

Model 7 0.954 0.916 0.498 -0.94 1.50 -0.639 6.88 

Model 8 0.969 0.932 0.650 -1.10 1.81 -0.650 6.99 

Table 5.5 Minimum of our first-principles based model (Model 0) for YMnO3 in comparison 

to LSDA+U data (ab-initio) in terms of amplitudes Q  of 3K ,  2  and 1  modes (in fractional 

units), in-plane and out-of-plane strain a  and ,c  total energy E  and bulk polarization 0 ,P  

respectively. Alternative models when excluded from Eq. 5.5 the terms of 

1: 1  mode, 2: 1  strain individual mode 
1

,a cQ  and strain mode coupling 
3 1

,a cQ Q  and 

2 1
,a cQ Q  3: 2  and 1  mode coupling 

2 1

Q Q  and 2  strain individual mode coupling 

2
aQ , 4: 3K  and 2  strain mode coupling 

3 2
, Ka cQ Q , 5: 3K  strain individual mode coupling 

3, Ka cQ , 6: 1  strain individual mode coupling 
1

,a cQ , 7: 3K  and 1  mode coupling 

3 1

,Q Q  8: 3K  and 1  mode coupling 
3 1

Q Q  and strain mode coupling 
3 1

,a cQ Q . 

If we exclude just the strain coupling terms 
1

, ,a cQ  
3 1

,a cQ Q  and 
2 1

,a cQ Q  of 1  mode 

(see Model 2 in Table 5.5), the model results with respect to ab-initio calculations are slightly 

improved (correspondence within 12% for the mode 3K  and 2  amplitudes, energy and 

polarization), but still the strain a  and c  values remain unchanged and the amplitude of 1  
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mode is not well estimated. This confirms that 
1

 mode is induced via the coupling with 

strain. 

Next, we analyze the role of the 
2
 mode in the model. 

As discussed and concluded in Section 5.2, the coupling between 
2
 and 

1
 modes and 

2
 

individual mode with strain is weak as the polynomial coefficients of the terms 
2 1

Q Q  and 

2
aQ , respectively, are small and might be probably excluded from the model (Eq. 5.5). As 

we can see in Table 5.5 (see Model 3), the model results in this case are slightly 

overestimated, but still in satisfactory agreement with the ab-initio calculations. The mode 

amplitudes, energy and polarization are reproduced more precisely (within 2 %), but the 

coupling with strain is not so good (the strain a  and c  values are reproduced within 14 %) 

compare to the ab-initio calculations. 

If, in the following, we exclude the strain mode coupling terms 
3 2

, Ka cQ Q  of 3K  and 
2
 

modes (Model 4), we observe that the amplitude of 
2
 mode remains almost unchanged and 

the other parameters are highly overestimated. The strain relaxation is again worst (within 

27 %). 

Concluding, the Model 3 and Model 4 results confirm that 2  mode is not sensitive to strain, 

but this mode contribute to define well the strain relaxation. 

Last, we analyze the coupling with strain of the 3K  and 1  modes. 

In the previous Section 5.2, we posed that 3K  mode couples with strain stronger than 1  

mode. In order to check it, we excluded, once, the terms 
3, Ka cQ  that define the 3K  individual 

mode coupling with strain (Model 5), next, the terms 
1

,a cQ  that define the 1  individual 

mode coupling with strain (Model 6). We notice that both model results are strongly 

underestimated compare to the ab-initio results, in particular, the strain values and the 

amplitude of 1  mode. These values are not so well estimated in case when the coupling with 
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strain of 
3K  mode is absent (Model 5), which confirms that the coupling with strain of 

3K  

mode is stronger than that of 
1

 mode. 

Then, in order to check whether the coupling of 3K  and 
1

 individual modes or the coupling 

of 
3K  and 

1
 individual modes with strain is more significant to define properly the strain 

relaxation, we exclude, once, the terms 
3 1

KQ Q  (Model 7) and, next, in addition the terms 

3 1
, Ka cQ Q  (Model 8), respectively. We observe that the results obtained within 

Model 7 and Model 8 configurations are less accurate compared to ab-initio results. In the 

following, we notice that Model 7 values are further away from the ab-initio values than 

Model 8 results. This means that the coupling of 3K  and 
1

 individual modes itself is more 

significant than their coupling with strain. 

5.4 Mechanical and electrical boundary conditions in 

YMnO3 thin films 

In this section, we apply our constructed first-principles model to study the epitaxial YMnO3 

thin films. The main difference comparing to the bulk case is that (i) the thin film is 

constrained by the substrate meaning that it is under the imposed mechanical boundary 

conditions and (ii) the electric field within the film depends on the electrical boundary 

conditions. 

5.4.1 Introduction 

In order to treat the mechanical and electrical boundary conditions in a real system, we 

consider a model ferroelectric capacitor structure under finite bias bV  as shown in Figure 5.3. 
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Figure 5.3 Structure of ferroelectric capacitor: a ferroelectric film of m thickness (FE) 

between two ideal metallic (M) electrodes with applied bias bV  separated by a region of 

thickness eff . The vectors sP  and sF  show the orientation of the spontaneous polarization 

and depolarizing field, respectively. V , the potential drop across the interface. 

As it has been proposed recently [62], the electric enthalpy F of ferroelectric capacitor can be 

written as: 

2 ,b

el z el z bF mU P S PV                                             (5.6) 

where the first term corresponds to the internal energy U as described by our model (Eq. 5.5), 

the other two terms correspond to an additional electrostatic energy dependent on the 

electrical boundary conditions. The latter are fixed by two independent parameters: the 

screening length of the electrodes eff  and the applied bias bV . 

The coefficient el  in Eq. 5.6 is given by 

0

0

,

(1 2 )

eff

el
eff

S

S

m

                                                 (5.7) 

where 0 364.86 Å
3
 is the volume and 32.84S  Å

2
 is the surface of one unit cell of 

paraelectric YMnO3 (LSDA+U, Chapter 3); m  is the thickness of the thin film expressed in 

eff eff

sP

dF

( )V z

bV
0

eff

D
V

m

M MFE

+

+

+

+

+

+

+

+
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terms of the number of layers, 
eff

 is the effective screening length in Angstroms, 

12

0 8.85 10  is the permittivity of vacuum and 6.46  [57] is the optical dielectric 

constant. 

The spontaneous polarization zP  is induced by the polar 
2
 mode with the atomic 

displacements along the ferroelectric z-axis and in Eq. 5.6 is: 

2

*

0

Z
,zz

zP Q                                                          (5.8) 

where *Zzz  is the diagonal component of the LSDA+U Born effective charges reported in 

Chapter 4 (see Table 4.4), 
2

Q  is the amplitude of the atomic distortion of 
2
 mode defined 

in Eq. 5.3. 

The coefficient b

el  in Eq. 5.6 is given by 

0

1
.

1 2

b

el
eff S

m

                                                     (5.9) 

The term 2

el zP  in Eq. 5.6 takes into account the effect of the incomplete screening of the 

depolarizing field by the metallic electrodes. It renormalizes the term 
2

2Q  in our model 

(Eq. 5.5) and tends to suppress the polarization since the parameter el  is always positive. 

In what follows, we will restrict our investigations to capacitor without applied bias ( 0bV ). 

We will investigate the evolution of the ferroelectric properties with the quality of screening 

provided by the electrodes. 

In the limit of eff , the system is under the open-circuit conditions. The coefficient of 

2

el zP  term is written as 

2

2
*

2 20

0 0

Z
.

2

zz
el z

m
P Q                                              (5.10) 
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In case of perfect screening ( 0eff
), the tem 2 0el zP  and this yields in short-circuit. 

Then we can analyze the system under the imperfect screening conditions for finite value 
eff

 

choosing the typical value in perovskites of an effective screening length of 0.25 Å 

(Eq. 5.6). 

Note that when the system is under the open-circuit conditions, not only the ionic contribution 

(Eq. 5.7), but also the electronic contribution is taken into account to total polarization. The 

decomposition is allowed by the application of the Born-Oppenheimer approximation when 

the total polarization of the system zP  is written as a sum of an ionic contribution ionP  and an 

electronic contribution elP : 

2

*

0

0

Z
,zz

z el ionP P P E Q                                         (5.11) 

where  is the optical susceptibility defined as 1 , E  is the electric field expressed 

via the electronic polarization with the electric displacement 0D  as 
0

.ionP
E  In the 

following, the total polarization in z direction under the open-circuit conditions is: 

2

*

0

Z1
.zz

zP Q                                                      (5.12) 

As we can see, in Eq.5.12, the spontaneous polarization is not only dependent on the Born 

effective charges 
*Z  and atomic distortions 

2

Q  (see Eq. 5.8), but also on the optical 

dielectric constant , which causes the reduce of the polarization under the open-circuit 

conditions. 

Finally, let us mention than an additional complication arises from the fact that YMnO3 

exhibits in its paraelectric centrosymmetric phase a non-vanishing formal polarization [63]. 

When dealing here with YMnO3 films in open-circuit, we consider the stoechiometric films in 

a practical situation, where a given underlying mechanism (adsorbates, defects, …) appearing 

likely during the growth at high temperature, is screening the formal polarization, but we 

assume that this screening is frozen and that no additional screening of the ferroelectric 
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polarization is present (i.e. the displacement field of the paraelectric field is taken as zero 

[64]. In the case of a ferroelectric capacitor with ideal or real electrodes, we better refer to a 

symmetric configuration (i.e. with the same interface on both sides); in this case, the eventual 

imperfect screening of the formal polarization will simply produce the same jump of potential 

at both interfaces, without producing any field in the film. 

5.4.2 Role of mechanical boundary conditions 

In this section, we will consider thin films of YMnO3 epitaxially grown on substrate under 

short-circuit conditions with a perfect screening of the depolarizing field. This enables the 

analysis of the role of mechanical boundary conditions imposed by a substrate independently 

from the electrical boundary conditions. In short-circuit, the results are independent of the 

film thickness. 

Figure 5.4 shows our model results minimizing the Eq. 5.5 in terms of distortion amplitudes 

3
Q , 

2

Q , 
1

Q  and a  or c  (depending on which in-plane or out-of plane strain was varied) 

for a film of YMnO3 under the mechanical boundary conditions in short-circuit, when the 

screening of the depolarizing field is perfect. 

As we can see in Figure 5.4 (a), the amplitude of 1  mode varies significantly from 1.62 to 

-0.62 on the applied in-plane strain a  in the range from -3% to +3%. While the 2  and 3K  

modes are just slightly strain dependent. The amplitudes of 2  and 3K  decrease with strain 

by 0.26 (from 1.04 to 0.78) and 0.32 (from 1.10 to 0.78) fractional units at [ 3%, 3%]a , 

respectively. This confirms once again that the 1  mode plays an important role in treating 

the strain relaxation. Unfortunately, the amplitudes of 2  and 3K  modes are little sensitive to 

epitaxial strain and they cannot be expected to be tuned using the epitaxial strain favouring 

the ferroelectricity. 
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Figure 5.4 Evolution of the amplitudes of 3K , 
2
 and 

1
 distortions in the P63cm ground 

state of epitaxial YMnO3 thin films under short-circuit ( 0eff ) in terms of (a) in-plane 

epitaxial strain a  imposed by the substrate and (b) out-of-plane strain c  (at T = 0 K). 

Similar results are observed minimizing the model (Eq. 5.5) in terms of 
3

Q , 
2

Q , 
1

Q  and 

a  at various out-of-plane strain c  (Figure 5.4, b). The amplitudes of 2  and 3K  modes are 

almost the same and show a similar coherent behaviour – slight increase with strain. The 
3

Q  

increases by 0.32 (from 0.75 to 1.04) fractional units at [ 3%, 3%]c  as decreases in case 

of a  (Figure 5.4, a). The 
2

Q  increases by 0.32 (from 0.68 to 1.00) fractional unit at 

[ 3%, 3%]c , slightly more than decreases in case of a . The 1  mode shows a strong 

dependence on strain. The 
1

Q  increases from -0.79 to 1.21 fractional units with out-of-strain 

in the range between -3 % and +3 % . In opposite to
2

Q , the amplitude of 1  mode increases 

less than decreases in case of in-plane strain a  between -3 % and +3 % (Figure 5.4, a). 
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We observe that the distortions linearly decrease with in-plane strain 
a
 between -3 % and 

+3 % (Figure 5.4, a) and a slightly quadratic dependence on strain of distortion amplitudes is 

observed with out-of-plane strain c  between -3 % and +3 % (Figure 5.4, b). 

5.4.3 Role of electrical boundary conditions 

Now when the role of mechanical boundary conditions in thin films of YMnO3 is understood, 

in the present section, we discuss the role of electrical boundary conditions. We consider the 

system under open-circuit conditions, when the depolarizing field is not screened, and under 

the imperfect screening of depolarizing field conditions with the effective screening length 

0.25eff
Å. In this case, we considered a film thickness of 11.11 Å ( 1m ). While in 

open-circuit, the results are independent of the thickness. 

Figure 5.5 shows our model results for a film of YMnO3 in the P63cm ground state obtained 

minimizing the Eq. 5.5 with the term 2

el zP  included (Eq. 5.10) in terms of the distortion 

amplitudes of 3K , 2  and 1  modes and out-of plane strain c  with various in-plane strain 

a  between -3% and +3%. The polarization
4
 P was calculated using Eq. 5.12 The bulk 

polarization P0 equal to 7.31 2/C cm  was calculated using Eq. 5.8, when 
2

Q  is at a global 

minimum of our model (see Table 5.5). The bulk value 0c  equal to 2.23 % corresponds to a 

global minimum of our model (see Table 5.5). 

As expected and shown in Figure 5.5 (a), the term 2

el zP  has an impact only to 2  mode, 

which amplitude under open-circuit conditions reduces comparing to the amplitude under 

short-circuit by a factor of 1.5 - 2.0 for [ 3%, 3%]a . In case of imperfect screening, the 

amplitude of 2  mode under open-circuit reduces (comparing to short-circuit) by a factor of 

1.1 - 1.2 at [ 3%, 3%]a  and is in between short-circuit and open-circuit remaining closer 

                                                

4 The polarization P, in the following, unless stated differently, corresponds to the polarization along z direction 

Pz. 
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to perfect screening case. The direct change of 
2

Q  indirectly influences the amplitudes of 
3K  

and 
1

 modes, but the effect is negligible. The 
3

Q  and 
1

Q  remain almost constant under 

short-circuit and open-circuit conditions. For this reason, we didn‟t include in Figure 5.5 (a) 

the evolution of 3K  and 
1

 mode amplitudes under imperfect screening conditions. 

 

 

 

 

Figure 5.5 Evolution of (a) the amplitudes of 3K , 2  and 1  distortions in fractional units, 

(b) the spontaneous polarization P (relative to the bulk polarization P0), (c) the out-of-plane 

strain c  (relative to the bulk value 0c ) in the P63cm ground state of epitaxial YMnO3 films 

under short-circuit ( 0eff  and 0.25eff Å ( 1m )) and open-circuit ( eff ) in terms of 

the in-plane epitaxial strain a  imposed by the substrate (at T = 0 K). 

The spontaneous polarization (Figure 5.5, b) in a film of ferroelectric YMnO3 under open-

circuit conditions is significantly reduced comparing to short-circuit by a factor of 10 - 13 at 

[ 3%, 3%]a , although the amplitude of 2  mode is reduced by a factor of 1.5 - 2.0 for 
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[ 3%, 3%]a
. As discussed in Section 5.4.1, under open-circuit conditions purely 

electronic response to total polarization is taken into account through the optical dielectric 

constant , which essentially causes the reduction of the polarization (see Eq. 5.8 and 

Eq. 5.12). Surprisingly, the polarization is reduced, but not supressed as expected for very 

thin films of proper ferroelectrics [65]. The system remains ferroelectric confirming the 

results obtained by Sai et al. [66]. Under the imperfect screening conditions, consistently with 

the amplitude of 
2

Q  mode, the polarization reduces less by a factor of 1.0 – 1.2 at 

[ 3%, 3%]a . 

As expected, under the compressive in-plane strain between -3 % and +3 % the system is 

elongated along c-axis (Figure 5.5, c) by a factor of 2.3 from 1.79 to -0.77 fractional units, 

respectively. The same tendency is obtained for short-circuit and imperfect screening 

conditions. The curves superpose and the size of a symbol is too big to see an effect. Thus we 

show the out-of-plane strain dependence on in-plane strain only under open-circuit conditions. 

Figure 5.6 shows our model results minimizing Eq. 5.5 in terms of the amplitudes of 3K , 2  

and 
1

 modes and the in-plane strain a  at out-of-plane strain c  between -3 % and +3 % for 

a film of ferroelectric YMnO3. The polarization P and the bulk polarization P0 were 

determined in the same way as in Figure 5.5. The bulk value 0a  equal to -1.31 % 

corresponds to a global minimum of our model (see Table 5.5). 

Comparing Figure 5.5 (a) to Figure 5.6 (a), the evolution of amplitudes of 3K , 2  and 1  

modes in case of uniaxial strain is in opposite direction than in case of epitaxial strain. The 

amplitudes are minimum under compressive 3% strain and maximum under a tensile 3% 

strain. The amplitude of 2  mode reduces comparing to short-circuit by a factor of 1.9 - 1.7 at 

[ 3%, 3%]c . Comparing to effect of epitaxial strain (Figure 5.6, a), the factor by which 

reduces polarization in open-circuit is bigger for compressive and smaller for tensile strain by 

a factor of 12 - 11 at [ 3%, 3%]c  (Figure 5.6, b) under open-circuit conditions, 

respectively. Under imperfect screening conditions ccomparing to effect of epitaxial strain, 
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similarly to open-circuit, the polarization is reduced more by a factor of 1.2 for compressive 

strain and reduced less by a factor of 1.1 for tensile strain at [ 3%, 3%]c . 

 

 

 

 

Figure 5.6 Evolution of (a) the amplitudes of 3K , 2  and 1  distortions, (b) the spontaneous 

polarization P (relative to the bulk polarization P0), (c) the in-plane strain a  (relative to the 

bulk value 0a ) in the P63cm ground state of YMnO3 thin films under short-circuit ( 0eff  

and 0.25eff Å ( 1m )) and open-circuit ( eff ) in terms of the out-of-plane strain c  

(at T = 0 K). 

The behaviours of 3K  and 1  modes (Figure 5.6, a) don‟t differ significantly under open-

circuit, short-circuit and imperfect screening conditions. Although, the amplitudes of 3K  and 

1  modes distance more far with epitaxial than uniaxial strain. The amplitude of 3K  mode 

increases from 0.72 to 1.00 fractional units (open-circuit) and from 0.74 to 1.03 fractional 

units (imperfect screening) with strain between -3 % and +3 %. The amplitude of 1  mode 
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increases from -0.82 to 1.19 fractional units (open-circuit) and from -0.80 to 1.21 fractional 

units (imperfect screening). As we can see, in case of imperfect screening, the amplitudes of 

3K  and 
1

 modes are slightly smaller than in case of imperfect screening, but too small to be 

included into the graph. Thus we didn‟t show the evolution of 
3

Q  and 
1

Q  under the 

imperfect screening conditions in Figure 5.6 (a). 

In case of uniaxial strain, the in-plane strain (Figure 5.6, c) is less sensitive to out-of-plane 

strain in the range from -3 % to +3 %. The strain value increases from -0.58 to 1.21 by a 

factor of 2.1, respectively. The dependence is similar to that for imperfect screening. 

5.5 Conclusions 

In this chapter, we discussed a model built from first principles describing the properties of 

epitaxial YMnO3 thin films under the mechanical and electrical boundary conditions. 

Our first-principles calculations confirmed that the ferroelectric distortion is mainly coming 

from the unstable zone-boundary 3K  mode of the paraelectric phase, at a frequency of 

153i cm
-1

 and the stable zone-center 2  mode, at a frequency of 85 cm
-1

. However, the proper 

strain relaxation mandatory required the inclusion of 1  mode. Our analysis showed that the 

1  mode is induced via the 3K  mode coupling with strain. Contrary to 3K  and 1  modes, 

the polar 2  mode showed a weak coupling with strain. 

Our first-principles model properly reproduced the bulk ferroelectric ground-state of YMnO3 

and allowed us to predict the evolution (at T = 0 K) of 3K , 2  and 1  distortion amplitudes, 

spontaneous polarization and strain between metallic electrodes taking into account the 

quality of screening provided by the electrodes through an effective screening length 

parameter, eff. 
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The amplitude of 
1

 mode was strongly strain dependent, while the amplitudes of 
3K  and 

2
 

modes were little strain dependent under the mechanical boundary conditions (epitaxial and 

uniaxial strain between -3% and 3%) and electrical boundary conditions (open-circuit, short-

circuit and imperfect screening). The distortion amplitudes and polarization for imperfect 

screening of depolarizing filed with the screening length 0.25eff
Å were always closer to 

perfect screening (short-circuit) than without screening of the depolarizing field (open-circuit) 

conditions. All 3K , 
2
 and 

1
 distortions were proportionally more sensitive to compressive 

strain along both a and c directions. The 
3K  and 

1
 modes were slightly and significantly 

more sensitive to epitaxial than uniaxial strain, respectively. At the opposite, the 
2
 mode 

was little more sensitive to uniaxial than epitaxial strain. All distortions showed a linear and 

slightly quadratic behavior with epitaxial and uniaxial strain in the range from -3 % to +3 %, 

respectively. The little dependence on strain of 3K  and 
2
 modes didn‟t confirm the 

expectations to tune the ferroelectricity in hexagonal YMnO3 as was successfully achieved in 

cubic perovskites. 

The slightly stronger response to uniaxial strain of 
2
 mode was in agreement with a decrease 

of the amplitude 
2
 under open-circuit comparing to short-circuit conditions by a factor of 

1.5 – 2.0 and 1.9 - 1.7 for epitaxial and uniaxial strain between -3 % and +3 %, respectively. 

In the following, the spontaneous polarization decreased by a factor of 10 - 13 and 12 - 11 for 

epitaxial and uniaxial strain, respectively. Although, a big decrease of 2  amplitude under 

open-circuit conditions (comparing to short-circuit) was observed, the ferroelectricity was not 

suppressed in thin films of YMnO3. The film remained ferroelectric even under the open-

circuit conditions. 

As expected, in case of in-plane compression of hexagonal YMnO3 structure, we observed an 

elongation along c direction and vice versa. The response of system was bigger to applied 

epitaxial than uniaxial strain. 
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  Chapter 6

 

Structural and dynamical properties 

of experimentally grown YMnO3 

epitaxial thin films 

The present chapter is devoted to the experimental growth, by liquid injection Metal Organic 

Chemical Vapor Deposition (MOCVD), and characterization of thin films of hexagonal 

YMnO3. The epitaxial growth and structural properties of hexagonal YMnO3 films on YSZ 

substrate are discussed. We report our room-temperature Raman spectra of films in 

comparison to single crystal discussed in the previous chapters of this manuscript. 

6.1 Epitaxial growth on yttria-stabilized zirconia substrate 

As presented in Chapter 1, YMnO3 usually crystallizes in a stable hexagonal P63cm phase, but 

can also be stabilized in a perovskite-type orthorhombic phase [67,68,69]. The growth of 

hexagonal YMnO3 is therefore not straightforward since the use of usual perovskite substrates 

(SrTiO3, LaAlO3) promote the growth of the perovskite phase of YMnO3 phase (by epitaxial 
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phase stabilization). The growth of hexagonal phase required to find an appropriate substrate. 

The choice was limited by the requirement of having a good crystalline match with hexagonal 

YMnO3. In this work, we used the yttria-stabilized zirconia (YSZ) (111) substrate. 

The crystal structure of YSZ is a cubic fluorite-type structure with the space group Fm-3m 

(225) (Figure 6.1). The lattice parameter is 
YSZ 5.12a  Å. The plane of the crystal surface 

used for the growth of hexagonal films is (111) finished by Zr (Y) atoms
5
. 

 

 

Figure 6.1 Crystal structure of YSZ. The dashed line shows the plane (111). 

The atomic arrangement of the (111) plane of YSZ substrate matches very well the hexagonal 

structure of YMnO3 (Figure 6.2) and allows an epitaxial growth with a good crystalline 

quality. 

The correspondence between the lattice parameter YSZa  of YSZ substrate and the distance of 

hexagonal atomic arrangement hexa  shown in Figure 6.2 is: 

hex YSZ

3
 .

2
a a                                                         (6.1) 

                                                

5
 The YSZ (111) substrates were provided by company CrysTec [70] through the collaboration in European 

Project MaCoMuFi. 
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Then, the epitaxial strain 
s
 imposed by the YSZ (111) substrate on hexagonal YMnO3 film 

is given as follows: 

hex YMO
s

YMO

.
a a

a
                                                       (6.2) 

In compounds exhibiting different phases, report of epitaxial strain is often misleading in the 

literature since its value depends on the phase taken as reference. 

On one hand, the evaluated epitaxial strain S-FE  imposed by YSZ (111) substrate on the 

ferroelectric phase of YMnO3 (space group P63cm) is 2.1 %  considering the experimental 

lattice parameter FE

YMO 6.14a Å of YMnO3 [44] (for other lattice parameters see Table 3.2). 

On the other hand, the epitaxial strain S-PE  imposed by YSZ (111) substrate on the 

paraelectric phase of YMnO3 is 0.74 %  using the experimental lattice parameter 

PE

YMO 3.61a Å of YMnO3 [43] (for other lattice parameters see Table 3.4). 

 

A B 

Figure 6.2 Structural relation between YSZ and hexagonal YMnO3 (space group: P63cm). 

Equivalent hexagonal atomic arrangement (violet dashed line) in (111) plane of Zr (Y) atoms 

(orange balls) of YSZ; hexa  is the distance between two atoms connected by dashed line (A). 

The plane of oxygen atoms (violet balls) of YMnO3; YMOa  is the lattice parameter defined by 

the distance between two oxygen atoms (B). 
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Since our first-principles model presented in Chapter 5 is built around the paraelectric 

reference structure of YMnO3, in further discussion we will often consider the epitaxial strain 

S-PE
 between YSZ (111) substrate and paraelectric phase of YMnO3. 

6.2 Growth parameters 

We have grown the hexagonal YMnO3 epitaxial thin films using liquid injection MOCVD. 

One of the challenges in the chemical vapour deposition of complex oxides is the control of 

the film composition as the molar ratio of precursors in the liquid solution is different than 

that in the film. The different precursors have different decomposition yields. The elements 

have different behaviours as far as diffusion and incorporation in the lattice is concerned. A 

calibration is needed to find out the appropriate ratio. 

The main growth parameters that we optimized are the growth temperature (between 825 and 

900°) and the molar ration of Y/Mn in the liquid solution (between 0.8 and 1.2). The other 

growth parameters concerning the gas flows, the evaporation temperature and the Ar and O2 

partial pressures were already optimized by A. Bosak [70] and are listed in Table 2.1 in 

Chapter 2. 

6.3 Structural characterization 

We used the X-ray diffraction technique as a primary tool for the optimization of the growth 

conditions and for the characterization of the crystalline structure of YMnO3 thin films. 

Our YMO3 thin films are hexagonal, single phase and (001) textured. The optimized growth 

temperature is 850°C and the molar ratio of Y/Mn in liquid solution is Y Mn/ 0.9n n . 

As an example, Figure 6.3 shows a X-ray diffraction / 2  scan of a YMO3 film 32 nm  

thick grown on YSZ (111) substrate, where only peaks of YMnO3 (001) and YSZ (111) 
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families are observed. The rocking curve scan around the 004 reflection indicates a narrow 

c axis distribution of 0.07° shown in Figure 6.4. The same behavior is observed in other films. 

 

 

Figure 6.3 X-ray diffraction / 2  scan of hexagonal YMnO3 (YMO) film on YSZ (111) 

at 850°C and Y Mn/ 0.9n n . The film thickness is 32 nm. 

 

Figure 6.4 X-ray diffraction rocking curve of 004 reflection of hexagonal YMnO3 film 

of 32 nm thick grown on YSZ (111) at 850°C and Y Mn/ 0.9n n . 
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The X-ray diffraction -scans were measured by I. Gélard [71] to determine the epitaxial 

relationship between the substrate and the film, which is given as follows 

YMnO3(001)hex // YSZ(111) and YMnO3 <110 >hex // YSZ < 011 >. 

As discussed in Section 6.1, thin films of YMnO3 fully strained on YSZ (111) substrate are 

in-plane stretched by 2.1 % and are expected to exhibit a smaller out-of plane c-lattice 

parameter. This situation is expected for ultrathin films; as its thickness increases, the film 

will progressively relax and its c-parameter evolves to its unstrained value. Figure 6.5 shows 

the dependence of c-lattice parameter with film thickness for hexagonal YMnO3. 

 

 

Figure 6.5 Lattice parameter c dependence on thickness of hexagonal YMnO3 thin films. The 

lattice parameter was calculated from 008 reflection of films grown on YSZ (111) at 850°C 

and Y Mn/ 0.9n n . 

Consistently with our expectations, we observe that the c parameter smoothly evolves with 

the film thickness, saturating to the value of 11.31 Å, for films thicker than 50 nm. Although, 

with a lattice parameter smaller than the one measured on single crystals (between 11.40 and 

11.44 Å, see Table 3.2 in Chapter 3) those films can be considered as fully relaxed. A possible 

deviation from the stoichiometric Y/Mn ratio of 1 could explain the smaller lattice parameter 

of the relaxed films compared to the bulk [72]. We observe that the c parameter indeed 

decreases with decreasing film thickness. 
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Using our model (see Figure 5.3 in Chapter 5), we predict that the epitaxial strain imposed by 

the YSZ substrate, reduces the lattice parameter of fully strained films by 1.8 % compared to 

fully relaxed films. This translates c here into a lattice parameter of 11.11 Å (dashed line in 

Figure 6.5). This clarifies that our films at 19 – 53 nm are already partly relaxed. Assuming a 

smooth evolution, it also suggests that fully strained films are only observed below 4.5 nm; 

above this value the films are partly relaxed. 

6.4 Room-temperature Raman spectra 

As discussed in Chapter 4 (see Table 4.1), hexagonal YMnO3 in space group P63cm has 38 

Raman-active phonon modes. The majority of these modes has already been observed and 

identified (see Section 4.2.4 in Chapter 4). At the opposite, to the best of our knowledge, no 

experimental Raman data was previously reported on YMnO3 thin films. Therefore, we were 

interested to measure the Raman spectra of thin films and compare to those of a single crystal 

of YMnO3. 

Figure 6.6 shows the polarized room-temperature Raman spectrum of YMnO3 thin film of 

32 nm thick grown on YSZ (111) substrate. The direction of incident and scattered light is 

along c-axis. The incident and scattered light were polarized in ab plane. 

As we can see, we observed two Raman peaks at 617 cm
-1

 and 686 cm
-1

 frequencies. The first 

peak corresponds to the phonon coming from the YSZ substrate and the second is a A1(LO) 

phonon mode of YMnO3. 

The frequency of A1(LO) mode measured in 32 nm thick thin film of YMnO3 at 686 cm
-1

 is 

within the experience error and equal to the frequency of the A1(LO) mode measured in a 

single crystal at 684 cm
-1

 (see Figure 4.4 in Chapter 4). It corresponds to our A1(LO8) mode 

calculated at 691 cm
-1

 (LSDA+U) and 707 cm
-1

 (B1-WC) (see Table 4.2 in Chapter 4). We 

notice that the A1(LO) mode has no substantial LO-TO splitting so that what is measured is 

also the A1(TO9) mode (see Table 4.2 in Chapter 4). In further discussion, we will often 
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consider the A1(LO) mode measured at 686 cm
-1

 in thin film as A1(TO) (or 
1

 used in our 

model). 

 

Figure 6.6 Raman spectrum of YMnO3 thin film on YSZ (111) in z(xx)z  configuration at 

room temperature. Film of thickness 32nm grown at 850°C with Y Mn/ 0.9n n . 

In Figure 6.7, we observed a slight evolution of the Raman peak position with the film 

thickness. Although, this frequency change is within the experimental error, it might be 

questioned whether the following of this Raman peak position might provide indication about 

the degree of relaxation of the film. 

Interestingly, the A1(TO) mode at 686 cm
-1

 of ferroelectric P63cm phase corresponds to the 

1  (A1g) mode at 712 cm
-1

 of paraelectric P63mmc phase of YMnO3. The overlap between 

these two modes is equal to 0.995
6
. This 1  mode is associated to opposite motion of apical 

oxygen atoms in oxygen octahedral along z-axis as illustrated in Figure 5.1 and is included in 

our first-principles model discussed in Chapter 5. We observed there that the amplitude of 1  

mode is strongly strain dependent so that we can expect to measure a significant Raman shift 

                                                

6
 Contrary to the paraelectric 3  and 

2
 modes (see discussion in Section 4.4 in Chapter 4), the correspondence 

of a paraelectric 
1

 mode at 712 cm-1 with a ferroelectric A1(TO) mode at 686 cm-1 is one to one.6 
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with increasing film thickness reinforcing the hope that the Raman spectroscopy could be a 

useful indirect tool to evaluate the strain state of thin films. 

 

 

Figure 6.7 Evolution of A1(LO) mode in room-temperature Raman measurements (Raman 

shift in cm
-1

) on thickness of hexagonal YMnO3 thin films in z(xx)z  configuration on 

YSZ (111) at 850°C and Y Mn/ 0.9n n . Dashed line corresponds to a value of single crystal 

(obtained within this work, Figure 4.4 in Chapter 4). The line is for visual guidance. 

In order to quantify the strain effect and supplement with the theoretical estimations our 

experimental Raman results shown in Figure 6.7, we used our model to estimate the 

frequency shift of A1(TO) mode in a fully strained film. 

Our model provides the energy landscape in terms of relevant degrees of freedom. In order to 

determine the frequency of 1  mode in a fully strained film, we computed the curvature of 

model energy (Eq. 5.5 in Chapter 5) along 1  direction: 

1

1 1 2

2 2
2

(2)

2

2

0.34190 0.03312 0.01092 0.00526

0.60350 2.32756 1.42872 .aa c

Q Q Q
E

E
Q  (6.3) 
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This curvature is directly proportional to 2  and we can estimate it from different values of 

the parameters. Table 6.1 lists the amplitudes of 
3
, 

2
 and 

1
 modes and the values of in-

plane 
a
 and out-of-plane 

c
 strain in ferroelectric P63cm ground state of YMnO3 used to 

compute the energy curvature (Eq. 6.3) and determine the frequency of 
1

 mode for fully 

strained films of YMnO3. The first line corresponds to fully relaxed configuration in our first-

principles model. The strain percentage indicates the strain values with respect to the 

paraelectric phase of YMnO3. The second line indicates the mode amplitudes and the value of 

out-of plane strain for a fully strained film grown on YSZ (111) substrate (see Section 6.1). 

 

 
3

Q
 2

Q
 1

Q
 

 (%)a  
 (%)c  

(2) (eV)E  -1 (cm )  

Relaxed 0.974 1.007 0.999 -1.31 +2.23 0.3455 683 

Fully strained 

(YSZ) 
0.89 0.90 0.23 +0.74 +0.31 0.3443 682 

Table 6.1 Amplitudes of 3 , 
2
 and 

1
 modes (in fractional units) and in-plane a  and out-

of-plane c  strain in ferroelectric P63cm ground state of YMnO3 for (a) the relaxed structure 

respect to paraelectric structure (fully relaxed configuration in our model, see discussion and 

Table 5.5 in Chapter 5) and (b) for fully strained thin film of YMnO3 grown on YSZ (111) 

substrate. 

The computed frequency of 1  mode in a fully strained film is 682 cm
-1

. Contrary to our 

expectations, the strain effect on 1  mode frequency is very small and of the order of 1 cm
-1

 

(considering that the measured frequency of 1  mode in a relaxed film is 683 cm
-1

). We note 

that, computing the curvature of model energy (Eq. 6.3) when considering just the first three 

terms of 1  mode and neglecting the contribution of other terms, the effect is bigger and of 

the order of 14 cm
-1

 (669 cm
-1

). This means that the 1  mode is intrinsically sensitive to 

strain (as the amplitude reduces with strain, see Table 6.1) and it shifts the minimum to higher 

energy, but other anharmonic contributions as phonon-phonon coupling and phonon-strain 
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coupling act in order to compensate this evolution. This analysis concludes that the weak 

evolution shown in Figure 6.7 is not significant and is in agreement with the modeling. In 

addition, from our calculations, the frequency of 
1

 mode should increase with increasing 

film thickness contrary to what suggests Figure 6.7. 

It is unfortunate, that we observed just one intense Raman-active mode A1(LO) at a frequency 

of 686 cm
-1

 in YMnO3 thin films at room temperature. The background coming from the YSZ 

substrate (Figure 6.8) is too high and thus covered the other peaks of YMnO3. We obtained 

the same results for the other Raman measurement configurations (see Table 4.5 in 

Chapter 5). A posteriori, Raman spectroscopy does not appear as a useful tool to get 

information on the strain in such films. 

 

 

Figure 6.8 Raman spectrum of YSZ (111) in z(xx)z  configuration at room temperature. 

6.5 Conclusions 

The epitaxial growth of hexagonal YMnO3 with c-axis out-of-plane has been achieved on 

YSZ (111) substrate by liquid injection MOCVD. The optimised growth temperature was 
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850°C. The molar ration of Y/Mn in the liquid solution was 0.9. Films were grown in the 

thickness range of 19 – 207 nm. 

The structural characterization showed that the thin films of YMnO3 were of a good 

crystalline quality. The epitaxial relationship was YMnO3(001)hex // YSZ(111) and 

YMnO3 <110 >hex // YSZ < 011 >. The bi-axial tensile strain led to an elongation of the 

c-lattice parameter. The c parameter increased with increasing film thickness and reached a 

constant value corresponding to the relaxed lattice parameter. This result was consistent with 

the modelling, although the c-lattice parameter of relaxed thin film was smaller than the 

lattice parameters of single crystals reported in literature, which could be related to a 

deviation from 1:1 cationic stoichiometry. From our first-principles model results, we 

estimated that the films in a range of thickness of 19 – 53 nm with c value between 11.25 –

 11.30 Å were already partly relaxed. From first-principle model, we predicted a c value of 

11.11 Å for fully strained thin film of YMnO3 and estimated that the films started relaxing at 

4.5 nm. 

Then, we performed room-temperature Raman measurements expecting that the Raman 

spectroscopy could be a useful indirect tool to study strain state in thin films of YMnO3 

discussed in Chapter 5. We observed the phonon mode measured at a frequency of 686 cm
-1

, 

which we assigned to the 1  mode. From our first-principles model, this mode was predicted 

to have a weak frequency dependence on epitaxial strain. This is in good agreement with our 

experimental Raman measurements that showed only a weak evolution, within the 

experimental accuracy. 

In addition, we expected to compare the phonon frequencies observed in thin films with the 

frequencies measured in a single crystal YMnO3 within this work, but the YSZ substrate was 

too high Raman-active. We measured one phonon mode at 686 cm
-1

, which is in a good 

agreement with that measured in a single crystal and with that calculated from first-principles 

values. We couldn‟t observe other Raman-active phonons at room temperature. 
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Conclusions / Perspectives 

In this thesis, after presenting the general theoretical overview in Chapter 1 and our used 

theoretical and experimental techniques followed by technical details in Chapter 2, we 

reported a diverse study of yttrium manganite representing the class of less known hexagonal 

in comparison to usual widely studied cubic ABO3 compounds. We achieved to combine 

theoretical and experimental approaches. We explored yttrium manganite in single crystal and 

thin film forms. Both ground-state ferroelectric and high-temperature paraelectric phases of 

yttrium manganite were under investigation. Our main results can be summarized as follows. 

First, in Chapter 3, we reported our optimized structures of ferroelectric and paraelectric 

phases of hexagonal YMnO3 in bulk from first principles. The LSDA+U and B1-WC 

functionals and our limitation to collinear magnetism provided the good estimates of lattice 

parameters, atomic positions (except the position of Mn atom in ferroelectric phase), band gap 

and local magnetic moment of Mn atoms for both phases comparing to other theoretical and 

experimental data. The attempts to go beyond collinear magnetism and to treat more properly 

the triangular arrangement of Mn spins could be important to achieve a better description of 

the Mn position. 

Next, once we had the optimized structures, we calculated the zone-center phonon frequencies 

of ferroelectric and paraelectric phases of hexagonal YMnO3 in bulk, as reported and 

discussed in Chapter 4. From our calculations, we refined the assignment previously based on 

semi-empirical calculations of experimentally observed phonon modes available in the 

literature. We supplemented our theoretical study with our own measured Raman spectra 

measurements at room temperature of ferroelectric YMnO3 in bulk. Although the single 

crystal of YMnO3 was miscut, our calculated angular dependence of phonon frequencies was 
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weak and we concluded that our measured frequencies were good estimate of TO and LO 

modes and in very good agreement with previous experimental data available in the literature. 

The experimentally observed new E2 mode at a frequency of 247 cm
-1

 and proposed 

reassignment of experimentally measured modes with respect to our first-principles values 

increased the number of known Raman-active phonon modes from 28 to 32 out of 38 in 

ferroelectric phase of YMnO3. Our first-principles phonon calculations confirmed that the 

YMnO3 is indeed an improper ferroelectric. 

Then, we extended our study from bulk to thin films of hexagonal and improper ferroelectric 

YMnO3 reported in Chapter 5. In order to study whether the ferroelectricity in hexagonal as in 

cubic ABO3 compounds is tunable with strain engineering, we developed a first-principles 

model based on 3 , 
2
, 

1
 and strain degrees of freedom and we treated explicitly the role 

of the mechanical and electrical boundary conditions in thin film epitaxially grown on a 

substrate between two metallic electrodes. We showed that the 
1

 had to be included into the 

model to properly account for the strain relaxation and consequently this mode was observed 

to be strongly strain dependent. In contrary to our expectations, the hexagonal ABO3 

compounds didn‟t show high capabilities to tune ferroelectricity via strain engineering as the 

polar 
2
 mode and the unstable 3  showed a weak dependence on strain. However, the 

hexagonal ABO3 compounds remained highly interesting for the applications as the 

ferroelectricity was not suppressed even in ultrathin improper ferroelectric films under the 

open circuit conditions. 

Last, we realized the epitaxial growth of hexagonal YMnO3 thin films on YSZ substrate by 

MOCVD and we studied the structure of the films and its strain dependence using X-Ray 

diffraction and Raman spectroscopy as described in Chapter 6. In agreement with our first-

principles model for thin films of YMnO3, X-ray diffraction results showed the relaxation of 

c-lattice parameter with increasing film thickness to bulk value. In Raman spectra measured at 

room temperature, we observed a slight frequency dependence approaching the bulk value of 

the ferroelectric A1 symmetry mode measured at a frequency of 686 cm
-1

 with increasing film 

thickness. As the recorded ferroelectric A1 mode was one to one in correspondence to 

paraelectric 1  mode at a frequency of 712 cm
-1

 included in our model, we determined that 

the observed slight A1 phonon frequency dependence on film thickness was not significant. 
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Concluding, the perspectives of the present work, related to our constructed first-principles 

model and the experimental approach to study thin films of YMnO3, are the following. 

First, our first-principles model opens the possibility to study the role of mechanical and 

electrical boundary conditions in thin films of YMnO3 under finite bias. Next, it would be 

interesting to compare the behaviour of proper to that of improper ferroelectrics, for instance, 

compare the behaviour of BaTiO3 to the behaviour of hexagonal YMnO3. Going further, since 

the hexagonal YMnO3 is a magnetoelectric material, the model could be extended to treat the 

coupling with magnetism. 

From the experimental point of view, first, it would be interesting to study and understand 

better the existence of formal polarization and its screening mechanism in the paraelectric 

centrosymmetric phase of YMnO3. Next, the realization of the epitaxial growth of hexagonal 

YMnO3 films on less Raman-active substrates could let observe and measure more phonon 

modes and thus compare better the dynamical properties in film to those in bulk YMnO3. 
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Appendix A 

Overlaps of TO phonon modes 

This appendix contains total overlaps defined and discussed in Chapter 4 section 4.2.3.2. 

 

TO, 0° LO-TO, 20° TO (cm
-1

) LO-TO (cm
-1

) 
overlap 

A1(TO) 

overlap 

E1(TO) 

A1 (TO1) LO-TO (1) 170.18 170.33 0.9996 0.0283 

A1 (TO2) LO-TO (2) 252.23 252.76 0.9913 0.1314 

A1 (TO3) LO-TO (3) 272.39 272.40 0.9967 0.0811 

A1 (TO4) LO-TO (4) 312.57 312.03 0.9723 0.2337 

A1 (TO5) LO-TO (5) 427.58 427.58 0.9999 0.0127 

A1 (TO6) LO-TO (6) 460.08 459.96 0.9684 0.2494 

A1 (TO7) LO-TO (7) 497.92 481.31 0.7579 0.6524 

A1 (TO8) LO-TO (8) 593.21 530.34 0.7646 0.6445 

A1 (TO9) LO-TO (9) 691.23 691.24 1.0000 0.0025 

Table A.1 Total overlaps of TO phonon modes of A1 symmetry with modes at the angle 

of 20°. 
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TO mode, 

90° 

LO-TO 

mode, 70° TO (cm
-1

) LO-TO (cm
-1

) 
overlap 

A1(TO) 

overlap 

E1(TO) 

E1 (TO1) LO-TO (1) 171.28 171.28 0.0012 1.0000 

E1 (TO2) LO-TO (2) 183.03 183.03 0.0043 1.0000 

E1 (TO3) LO-TO (3) 211.13 211.56 0.0591 0.9983 

E1 (TO4) LO-TO (4) 245.23 245.23 0.0111 0.9999 

E1 (TO5) LO-TO (5) 273.99 282.94 0.6098 0.7926 

E1 (TO6) LO-TO (6) 301.71 303.91 0.4218 0.9067 

E1 (TO7) LO-TO (7) 366.72 373.05 0.25626 0.96661 

E1 (TO8) LO-TO (8) 379.22 380.17 0.1338 0.9910 

E1 (TO9) LO-TO (9) 402.69 403.08 0.0595 0.9982 

E1 (TO10) LO-TO (10) 418.69 419.52 0.0876 0.9962 

E1 (TO11) LO-TO (11) 459.44 459.44 0.0431 0.9991 

E1 (TO12) LO-TO (12) 488.85 488.86 0.0181 0.9998 

E1 (TO13) LO-TO (13) 622.20 622.17 0.0378 0.9993 

E1 (TO14) LO-TO (14) 644.10 644.09 0.0088 1.0000 

Table A.2 Total overlaps of TO phonon modes of E1 symmetry with modes at the angle 

of 70°. 
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Appendix B 

Overlaps of A1(TO) and 3K , 
2
 and 

1
 modes 

This appendix contains the overlaps defined and discussed in Chapter 4 section 4.4 and 

Chapter 6 section 6.4. 

 

mode 
frequency 

(cm
-1

) 

overlap 3K  

(153i cm
-1

) 

overlap 2  

(85 cm
-1

) 

overlap 1  
(712 cm

-1
)
 

A1 (TO1) 170 -0.731 0.187 -0.011 

A1 (TO2) 252 0.037 -0.616 0.034 

A1 (TO3) 272 0.144 -0.303 0.067 

A1 (TO4) 313 -0.217 -0.649 -0.055 

A1 (TO5) 428 -0.191 0.157 0.006 

A1 (TO6) 460 -0.458 -0.200 -0.001 

A1 (TO7) 498 0.006 0.091 0.017 

A1 (TO8) 593 -0.010 0.010 0.023 

A1 (TO9) 691 0.030 -0.005 -0.995 

Table B.1 Overlaps between the eigendisplacements of ferroelectric A1(TO) modes and 

paraelectric 3K , 2  and 1  modes. 
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Appendix C 

Coefficients of first-principles model 

for epitaxial YMnO3 thin films 

This appendix reports the explicit description of how the polynomial coefficients of the first-

principles model for epitaxial YMnO3 thin films presented in Chapter 5 were determined. The 

coefficients are the fitting parameters of the first-principles data performed for an optimized 

LSDA+U triple paraelectric phase reported in Chapter 3. All curves were fitted with the 4
th

 

order polynomial function in amplitude range of [-1, 1] with step of 0.25 in fractional units. 

We analysed the mode coupling with strain in the range of [-3 %, 3 %] with step of 1%. The 

self-consistent cycles were converged up to tolerances of 10
-9

 Ha / Bohr on the difference of 

total energy. We considered that the coefficients were negligible when the change of total 

energy was of the order of the calculations error of 1 meV. The values of coefficients were 

rounded till the last significant number. We used the colors to sort the associated polynomial 

terms. 

C.1 Notations 

This section contains the description of notations used in the energy expansion Eq. C.1. 
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3K   individual mode 
3K  

2
  individual mode 

2
 

1
  individual mode 

1
 

3KQ   distortion amplitude of 3K  mode in fractional units 

2

Q   distortion amplitude of 
2
 mode in fractional units 

1

Q   distortion amplitude of 
1

 mode in fractional units 

3 2
KQ Q  mode coupling : 3K  and 

2
 

3 1
KQ Q  mode coupling : 3K  and 

1
 

2 1

Q Q  mode coupling : 2  and 1  

a   in-plane strain 

c   out-of plane strain 

3, Ka cQ  strain individual mode coupling : strain and 3K  

2
,a cQ  strain individual mode coupling : strain and 2  

1
,a cQ  strain individual mode coupling : strain and 1  

3 2
, Ka cQ Q  strain mode coupling : strain and 3K , 2  

3 1
, Ka cQ Q  strain mode coupling : strain and 3K , 1  

2 1
,a cQ Q  strain mode coupling : strain and 2 , 1  
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3 1

2 2

KQ Q  in rectangle: not included into the model 

C.2 List of coefficients 

This section contains the notations of corresponding polynomial coefficients of the energy 

expansion Eq. C.1. A summary of numerical values is given in Section C.5. 

 

3

2

KQ , 
3

4

KQ       20 , 40  

2

2Q , 
2

4Q       20 , 40  

1

Q , 
1

2Q , 
1

3Q , 
1

4Q      10 , 20 , 30 , 40  

3 2

3

KQ Q , 
3 2

2 2

KQ Q      310 , 220  

3 1

2

KQ Q , 
3 1

2 2

KQ Q      210 , 220  

2 1

2Q Q , 
2 1

2 2Q Q      210 , 220  

2

a , 3

a        2a , 3a  

2

c , 3

c        2c , 3c  

a c , 2

a c , 2

a c      ac , 21ac , 12ac  

3

2

KaQ , 
3

2 2

Ka Q , 
3

4

KaQ      21 , 212 , 41  

3

2

KcQ , 
3

2 2

Kc Q , 
3

4

KcQ      23 , 232 , 43  

3

2

Ka cQ , 
3

4

Ka cQ      24 , 44  
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2

2

aQ , 
2

4

aQ       
21

, 
41

 

2

2

cQ , 
2

4

cQ       23 , 43  

1
aQ , 

1

2

aQ , 
1

2

aQ , 
1

2 2

aQ , 
1

3

aQ , 
1

4

aQ   11 , 112 , 21 , 212 , 31 , 41  

1
cQ , 

1

2

c Q , 
1

2

cQ , 
1

3

cQ , 
1

4

cQ    13 , 132 , 23 , 33 , 43  

3 2

3

KaQ Q , 
3 2

2 2

KaQ Q      311 , 221  

3 2

3

KcQ Q , 
3 2

2 2

KcQ Q      313 , 223  

3 1

2

KaQ Q , 
3 1

2 2

KaQ Q , 
3 1

2 2

KaQ Q    211 , 2112 , 221  

3 1

2

KcQ Q , 
3 1

2 2

KcQ Q      213 , 223  

2 1

2

aQ Q , 
2 1

2 2

aQ Q      211 , 221  

2 1

2

cQ Q , 
2 1

2 2

cQ Q      213 , 223  

C.3 Associated coefficients 

This section groups and lists the general notations of associated coefficients defined in 

previous Section C.2. 

 

3

2

, K( )a c Q   
2 2

2 20 21 212 23 232 24,a c a a c c a c  

3

4

, K( )a c Q   4 40 41 43 44,a c a c a c  
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2

2

,( )a c Q   2 20 21 23,a c a c  

2

4

,( )a c Q   4 40 41 43,a c a c  

1
,( )a c Q   

2 2

1 10 11 112 13 132,a c a a c c  

1

2

,( )a c Q   
2

2 20 21 212 23,a c a a c  

1

3

,( )a c Q   3 30 31 33, ,a c a c  

1

4

,( )a c Q   4 40 41 43, .a c a c  

3 2

3

, K( )a c Q Q   31 310 311 313,a c a c  

3 2

2 2

, K( )a c Q Q   22 220 221 223,a c a c  

3 1

2

, K( )a c Q Q   
2

21 210 211 2112 213,a c a a c  

3 1

2 2

, K( )a c Q Q   22 220 221 223,a c a c  

2 1

2

,( )a c Q Q   21 210 211 213,a c a c  

2 1

2 2

,( )a c Q Q   22 220 221 223,a c a c  

C.4 Energy expansion 

The internal energy U expansion for the hexagonal YMnO3 including all symmetry-allowed 

terms to fourth order in terms of relevant ionic and strain degrees of freedom is given in 

Eq. C.1. This is the equivalent energy expansion as that given in Chapter 5 (Eq. 5.5) with 

notations of coefficients instead of their numerical values listed in Section C.5. 
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3 32 2

2

2 2 2

1

1

1 1 1 1

3 31 1

3 3

1

3

2

20 40 20 40

10

2 2

3 2 2

K

2 4

K K

K

2

K K

20 30 40 310 220

210 2

2

20 210 22

4

2 2

0

2

2 3 4

[ , , , , ]

     

a c

Q Q Q Q Q

Q

Q Q Q Q

Q

Q Q Q Q

Q Q Q

Q

U Q Q Q

Q

3 3 3 3 3 3

2

3 3

2 2 3 3 2 2

2 2 3 3 21 12

21 212 41 23 232

2 2 2 4 2 2 2 4

K K K K K K

2 4

K K

43

24 44

21 41

2

     

+ +

a a a

a a c c ac a c a a c c

a a

a

c c c

a c

c a c ac c

c

a

a

Q Q

Q

Q Q Q Q

Q

Q

Q

1 1 1 1 1 1

1 1 1 1 1

3 2

2 2 2

2 2 2 2 3 4

2 2 3 4

23 43

11 112 21 212 31 41

13 132 23 33 43

3

4 2 4

311 K

       

+

a a a a a a

c c c c c

c

a

c

Q Q Q Q Q Q

Q

Q

Q

Q

Q

Q Q

Q

Q

3

2 1 2

3 3 3 31 1

1

1 1 1

3 3 32 2 2
221 313 223

211 2112 221 213 223

2

2 2 2 2 2 2 2 2

K K K K

2 2

2 2 3 2

11 221

K

2

K

1

2

2 3

K Ka c

a a a c c

a c

c

a

Q Q Q Q Q Q Q Q Q Q

Q Q Q Q

Q Q Q Q

Q

Q Q

2 1 2 1

2 2

3

2

22  .cQ Q Q

(C.1) 

 

The polynomial invariants were generated using the ISOTROPY software [61]. The character 

table for the most relevant 3K , 2  and 1  modes included in the model is listed in Table C.1. 
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D6h (6/mmm) E 6 3 2z 2h 2h‟ I -6 -3 mz md mv 

Multiplicity 1 2 2 1 3 3 1 2 2 1 3 3 

3K  2 0 2 0 0 -2 0 -2 0 -2 2 0 

2
 (A2u) 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 

1
 (A1g) 1 1 1 1 1 1 1 1 1 1 1 1 

Table C.1 Character table for the 3K , 
2
 and 

1
 modes. The top row indicates the 

symmetry operations. Space group: P63/mmc (194). Point group: D6h (6/mmm). 

C.4.1 Double-well potential of 
3K  mode 

When 
2 1

0Q Q  and 0,a c  the energy expansion Eq. C.1 is written as: 

3 3 3

individual mode 2 4

K 20 K 40 K .E Q Q Q                                     (C.2) 

We froze 3K  mode in various amplitudes 
3KQ  and computed the total energy of structure 

(Figure C.1). The coefficients of the second and fourth order terms are 

20 ( 1.450 0.003) eV  and 40 (1.138 0.004) eV,  respectively. 

 

 

 

Figure C.1 Energy as a function of 
3K .Q
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C.4.2 Single-well potential of 
2Γ  mode 

When 
3 1

K 0Q Q  and 0,a c  the energy expansion Eq. C.1 is written as: 

2 2 2

individual mode 2 4

20 40 .E Q Q Q                                     (C.3) 

We froze 
2Γ  mode in various amplitudes 

2

Q  and computed the total energy of structure 

(Figure C.2). The coefficients of the second and fourth order terms are 

20 (0.0193 0.0004) eV  and 40 ( 0.0004 0.0005) eV,  respectively. 

 

 

Figure C.2 Energy as a function of 
2

.Q
 

C.4.3 Single-well potential of 1  mode 

When 
3 2

K 0Q Q  and 0,a c  the energy expansion Eq. C.1 is written as: 

1 1 1 1 1

individual mode 2 3 4

10 20 30 40 .E Q Q Q Q Q                     (C.4) 
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We froze 
1

 mode in various amplitudes 
1

Q  and computed the total energy of structure 

(Figure C.3). 

 

 

Figure C.3 Energy as a function of 
1

.Q  

C.4.4 Coupled modes : 
3K  and 2Γ  

When 
3KQ  is fixed, 

1

0Q  and 0,a c  the energy expansion Eq. C.1 is written as: 

3 3 32 2 2 2

mode coupling 3 2 2 4

K 310 K 20 220 K 40, ( ) .E Q Q Q Q Q Q Q           (C.5) 

We froze the amplitude 
3KQ  of 3K  mode in range of [0.25, 1] with step of 0.25 in fractional 

units and calculated the potential of 2  mode (Figure C.4) as described in Section C.4.2. 

We plotted the first and second order terms of Eq. C.5 as a function of 
3KQ  (Figure C.5) : the 

mode coupling coefficients are 310 ( 0.462 0.006) eV  and 220 (0.217 0.005) eV,  

respectively. 
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Figure C.4 Energy as a function of 
2

Q  at fixed 
3K .Q

 

 

 

  

Figure C.5 Parameters 
3

3

310 KQ  and 
3

2

20 220 K( )Q  as a function of 
3K .Q  
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C.4.5 Coupled modes : 
3K  and 

1
 

When 
1

Q  is fixed, 
2

0Q  and 0,a c  the energy expansion  Eq. C.1 is written as: 

3 3 31 1 1

mode coupling 2 2 4

K 20 210 220 K 40 K, ( ) .E Q Q Q Q Q Q               (C.6) 

We froze the amplitude 
1

Q  of 
1

 mode in range of [0.25, 1] with step of 0.25 in fractional 

units and calculated the potential of 3K  mode (Figure C.6) as described in Section C.4.1. We 

plotted the second order term of Eq. C.6 as a function of 
1

Q  (Figure C.6). The mode 

coupling coefficients are 210 ( 0.1022 0.0004) eV  and 220 ( 0.0083 0.0005) eV.  The 

dependence is linear thus we didn‟t include the term 
31

2 2

KQ Q  (Eq. C.6) in our model (Eq. C.1). 

 

 

 

 

 

 

 

 
Figure C.6 Energy as a function of 

3KQ
 

at fixed 
1

.Q
 

 

Figure C.7 Parameter 
1 1

2

20 210 220Q Q  

as a function of 
1

Q . 
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C.4.6 Coupled modes : 
2Γ  and 

1
 

When 
1

Q  is fixed, 
3K 0Q  and 0,a c  the energy expansion Eq. C.1 is written as: 

2 1 1 1 2 2

mode coupling 2 2 4

20 210 220 40, ( ) .E Q Q Q Q Q Q               (C.7) 

We froze the amplitude 
1

Q  of 
1

 mode in the range of [0.25, 1] with step of 0.25 in 

fractional units and calculated the potential of 
2
 mode (Figure C.8) as described in 

Section C.4.2. 

We plotted the second order term of Eq. C.7 as a function of 
1

Q  (Figure C.9). The mode 

coupling coefficients are 210 ( 0.0062 0.0002) eV  and 220 (0.0026 0.0002) eV.  

 

 

Figure C.8 Energy as a function of 
2

Q  at fixed 
1

.Q
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Figure C.9 Parameter 
1 1

2

20 210 220Q Q  as a function of 
1

Q . 

C.4.7 Elastic energy 

When 
3 2 1

K 0Q Q Q , the energy expansion Eq. C.1 is written as: 

elastic 2 2 3 3 2 2

2 2 3 3 21 12, .a c a a c c ac a c a a c c ac a c ac a cE  

(C.8) 

This is the expression of the elastic energy for a hexagonal structure with x y a  

(in-plane lattice parameters for hexagonal structure are equal) and z c . 

First, we imposed 0c  (Figure C.10, a), then 0a  (Figure C.10, b) and calculated the 

total energy for various strain in the range of [-5 %, 5 %] with first step of 1 % and the rest - 

0.5 %. The third order polynomial function fit gave the values of the elastic coefficients 

2 (973 1) eV,a  3 (-3313 25) eV,a  2 (445 1) eVc  and 3 (-1843 53) eV,c  

respectively. 

The energy expansion Eq. C.8 when a c  (Figure C.11, a) in terms of a  is written as: 

2 3

2 2 3 3 21 12( ) ( ) .a a c ac a a c ac ac aE                     (C.9) 
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Figure C.10 Energy as a function of a  (a) and c  (b). 

We determined the elastic coefficient (487 4) eVac  using the third order polynomial 

function. The determination of 21ac  and 12ac  required un additional equation. We imposed 

.a c  The energy expansion in terms of a  is written as follows 

2 3

2 2 3 3 21 12( ) ( ) .a a c ac a a c ac ac aE                   (C.10) 

The curve in Figure C.11 (b) is symmetric and the third order term in Eq. C10 is equal to zero. 

The coefficients are 21 ( 1630 55) eVac  and 12 ( 160 55) eVac . 

 

  

Figure C.11 Energy as a function of a c  (a) and a c  (b). 
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C.4.8 Coupling with strain : 
3K  

When 
2 1

0Q Q  and elastic 0E  the energy expansion Eq. C.1 is written as: 

3 3

3

stain individual mode coupling 2 2 2

K 20 21 212 23 232 24 K

4

40 41 43 44 K

, , ( )

( ) .

a c a a c c a c

a c a c

E Q Q

Q

(C.11) 

 

  

  

Figure C.12 Parameters 2  (a, c) and 4  (b, d) as a function of strain. 
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First, we imposed 0c
, then 0a

 and calculated the double-well potential of 
3K  mode 

(as described in Section C.4.1) for various strain in the range of [-3%, +3%]. We plotted the 

parameters 2  and 4  as a function of strain (Figure C.12). The parameter 2  shows the 

quadratic dependence along both a-axis and c-axis: the coefficients are 

21 (10.02 0.04) eV,  212 (-88 2) eV  (Figure C.12, a) and 23 (-2.39 0.02) eV,  

232 (66 1) eV  (Figure C.12, c). The fourth order parameter 4  shows the linear 

dependence: the coefficients are 41 (-2.37 0.09) eV  (Figure C.12, b) and 

43 (-5.35 0.09) eV  (Figure C.12, d), respectively. 

The energy expansion Eq. C.11 when a c  (Figure C.12) in terms of a  is written as: 

3 3

3

stain individual mode coupling 2 2

K 20 21 23 212 232 24 K

2 4

40 41 43 44 K

, ( ( ) ( ) )

( ( ) ) .

a a a

a a

E Q Q

Q

(C.12) 

We plotted the parameters 2  and 4  as a function of strain (Figure C.13) and obtained the 

coefficients 24 (1.06 0.09) eV  and 44 (19.1 0.6) eV,  respectively. 

 

  

Figure C.13 Parameters 2  (a) and 4  (b) as a function of strain : .a c  
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C.4.9 Coupling with strain : 
2Γ  

When 
3 1

K 0Q Q  and elastic 0E  the energy expansion Eq. C.1 is written as: 

2 2

2

strain individual mode coupling 2

20 21 23

4

40 41 43

, , ( )

( ) .

a c a c

a c

E Q Q

Q

              (C.13) 

 

  

  

Figure C.14 Parameters 2  (a, c) and 4  (b, d) as a function of strain. 

First, we imposed 0c , then 0a  and calculated the potential of 2  mode (as described 

in Section C.4.2) for various strain in the range of [-3%, +3%]. We plotted the parameters 2  
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and 
4
 as a function of strain. The coefficients are 

21 (-0.481 0.007) eV  (Figure C.14, a) 

and 41 (-0.082 0.008) eV  (Figure C.14, b). The coupling of 
2
 mode with out-of plane 

strain 
c
 is weak. We didn‟t include the terms 

2

2

cQ  (Eq. C.13, Figure C.13, c) and 
2

4

cQ  

(Eq. C.13, Figure C.13, d) in the model (Eq. C.1). 

C.4.10 Coupling with strain : 
1

 

When 
3 2

K 0Q Q  and elastic 0E  the energy expansion Eq. C.1 is written as: 

1 1

1

1

1

strain individual mode coupling 2 2

10 11 112 13 132

2 2

20 21 212 23

3

30 31 33

4

40 41 43

, , ( )

( )

( )

( ) .

a c a a c c

a a c

a c

a c

E Q Q

Q

Q

Q
 

(C.14) 

First, we imposed 0c , then 0a  and calculated the potential of 1  mode (as described 

in Section C.4.3) for various strain in the range of [-3%, +3%]. We plotted the parameters 1  

and 2  (Figure C.15), 3  (Figure C.16) and 4  (Figure C.17) as a function of strain. 

The first order parameter 1  shows the quadratic coupling with strain along both a-axis and 

c-axis : the coefficients are 11 (5.377 0.009) eV,  112 (-30.8 0.4) eV  (Figure C.15, a) 

and 13 (-9.31 0.02) eV,  132 (56.9 0.6) eV  (Figure C.15, c), respectively. The second 

order coefficient 2  shows the quadratic coupling with a  and linear coupling with c  : the 

coefficients are 21 (-0.302 0.005) eV,  212 (1.2 0.2) eV  (Figure C.15, b) and 

23 (-0.71 0.01) eV  (Figure C.15, d), respectively. 
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Figure C.15 Parameters 1  (a, c) and 2  (b, d) as a function of strain. 

 

  

Figure C.16 Parameter 3  as a function of a  (a) and c  (b). 
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Figure C.17 Parameter 4  as a function of a  (a) and c  (b). 

The higher order coupling with strain of 
1

 mode is negligible. We didn‟t include the terms 

1

3

aQ  and 
1

4

aQ   (Eq. C.14, Figure C.16), 
1

3

cQ , and 
1

4

cQ  (Eq. C.14, Figure C.17) in the 

model (Eq. C.1). 

C.4.11 Coupling with strain : 
3K  and 2  coupled modes 

When 
3KQ  is fixed, 

1

0Q  and elastic 0,E  the energy expansion Eq. C.1 is written as: 

- -
3 32 2

-
3 2

-
2

strain mode coupling 3

K 310 311 313 K

2 2

20 21 23 220 221 223 K

4

40 41 43

, , , ( )

( ( ) )

( ) .

a c a c

a c a c

a c

E Q Q Q Q

Q Q

Q

(C.15) 

We calculated the mode coupling coefficients 31  and 22  of 3K  and 2  modes (as described 

in Section C.4.4) for various strain in the range of [-3%, +3%] (Figure C.18). The coefficients 
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are 
311 (0.69 0.01) eV  (Figure C.18, a), 

221 (-0.267 0.008) eV  (Figure C.18, b), 

313 (2.57 0.03) eV  (Figure C.18, c), and 223 (-1.33 0.03) eV  (Figure C.18, d). 

 

  

  

Figure C.18 Coefficients 31  (a, c) and 22  (b, d) as a function of strain. 

C.4.12 Coupling with strain : 
3K  and 1  coupled modes 

When 
1

Q  is fixed, 
2

0Q  and elastic 0,E  the energy expansion Eq. C.1 is written as: 
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3 1

1

31

3

strain mode coupling 2 2

K 20 21 212 23 232 24

2

210 211 2112 213

2 2

220 221 223 K

4

40 41 43 44 K

, , , ((

( )

( ) )

( ) .

a c a a c c a c

a a c

a c

a c a c

E Q Q

Q

Q Q

Q
 

(C.16) 

We calculated the mode coupling coefficients 21  and 22  of 3K  and 
1

 modes (as described 

in Section C.4.5) for various strain in the range of [-3%, +3%]. The coefficient 21  shows the 

quadratic mode coupling with in-plane and linear coupling with out-of plane strain: 

211 (-0.659 0.005) eV,  2112 (4.5 0.2) eV  and 213 (0.878 0.008) eV  (Figure C.19, 

a and b), respectively. 

The higher order mode coupling with strain is negligible (Figure C.20). We didn‟t include the 

terms 
3 1

2 2

KaQ Q  (Eq. C.16, Figure C.19, a) and 
3 1

2 2

KcQ Q  (Eq. C.16, Figure C.20, b) in the 

model (Eq. C.1). 

 

  

Figure C.19 Coefficient 21  as a function of a  (a), c  (b). 
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Figure C.20 Coefficient 22  as a function of a  (a), c  (b). 

C.4.13 Coupling with strain : 2  and 1 coupled modes 

When 
1

Q  is fixed, 
3K 0Q  and elastic 0,E  the energy expansion Eq. C.1 is written as: 

2 1

1

1 2

2

strain mode coupling

20 21 23

210 211 213

2 2

220 221 223

4

40 41 43

, , , ((

( )

( ) )

( ) .

a c a c

a c

a c

a c

E Q Q

Q

Q Q

Q

          (C.17) 

We calculated the mode coupling coefficients 21  and 22  of 2  and 1  modes (as described 

in Section C.4.6) for various strain in the range of [-3%, +3%]. As we can see in Figure C.21, 

the coupling with strain is negligible, thus the terms 
2 1

2

aQ Q  and 
2 1

2 2

aQ Q  (Eq. C.17, 

Figure C.21, a and b, respectively), 
2 1

2

cQ Q  and 
2 1

2 2

cQ Q  (Eq. C.17, Figure C.21, c and d, 

respectively) are not included in the model (Eq. C.1). 
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Figure C.21 Coefficients 21  (a, c) and 22  (b, d) as a function of strain. 

C.5 Summary of coefficients 

 Coefficient eV Section 

3

2

KQ
 20  1.450  C.4.1 

3

4

KQ
 40  1.138  C.4.1 

2

2Q
 20  0.0193  C.4.2 

2

4Q
 40  0.0004  C.4.2 
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 Coefficient eV Section 

1

Q
 10  0.0010  C.4.3 

1

2Q
 20  0.1710  C.4.3 

1

3Q
 30  0.0055  C.4.3 

1

4Q
 40  0.0009  C.4.3 

3 2

3

KQ Q
 310  0.462  C.4.4 

3 2

2 2

KQ Q
 220  0.217  C.4.4 

3 1

2

KQ Q
 210  0.1022  C.4.5 

3 1

2 2

KQ Q
 220  0.0083  C.4.5 

2 1

2Q Q
 210  0.0062  C.4.6 

2 1

2 2Q Q
 220  0.0026  C.4.6 

2

a  2a  973  C.4.7 

3

a  3a  -3313  C.4.7 

2

c  2c  445  C.4.7 

3

c  3c  -1843  C.4.7 

a c  ac  487  C.4.7 

2

a c  21ac  1630  C.4.7 

2

a c  12ac  160  C.4.7 

3

2

KaQ  21  10.02  C.4.8 

3

2 2

Ka Q
 212  -88  C.4.8 

3

4

KaQ  41  -2.37  C.4.8 

3

2

KcQ  23  -2.39  C.4.8 

3

2 2

Kc Q
 232  66  C.4.8 

3

4

KcQ  43  -5.35  C.4.8 

3

2

Ka cQ  24  1.06  C.4.8 
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 Coefficient eV Section 

3

4

Ka cQ  44  19.1 C.4.8 

2

2

aQ

 
21  -0.481 C.4.9 

2

4

aQ

 
41  -0.082  C.4.9 

2

2

cQ

 
23  - C.4.9 

2

4

cQ
 43  - C.4.9 

1
aQ

 11  5.377  C.4.10 

1

2

aQ
 112  -30.8  C.4.10 

1

2

aQ
 21  -0.302  C.4.10 

1

2 2

aQ
 212  1.2  C.4.10 

1

3

aQ
 31  - C.4.10 

1

4

aQ
 41  - C.4.10 

1
cQ

 13  -9.31 C.4.10 

1

2

c Q
 132  56.9  C.4.10 

1

2

cQ
 23  -0.71 C.4.10 

1

3

cQ
 33  - C.4.10 

1

4

cQ
 43  - C.4.10 

3 2

3

KaQ Q
 311  0.69  C.4.11 

3 2

2 2

KaQ Q
 221  -0.267  C.4.11 

3 2

3

KcQ Q
 313  2.57  C.4.11 

3 2

2 2

KcQ Q
 223  -1.33  C.4.11 

3 1

2

KaQ Q
 211  -0.659  C.4.12 

3 1

2 2

KaQ Q
 2112  4.5  C.4.12 

3 1

2 2

KaQ Q
 221  - C.4.12 

3 1

2

KcQ Q
 213  0.878  C.4.12 

3 1

2 2

KcQ Q
 223  - C.4.12 
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 Coefficient eV Section 

2 1

2

aQ Q
 211  - C.4.13 

2 1

2 2

aQ Q
 221  - C.4.13 

2 1

2

cQ Q
 213  - C.4.13 

2 1

2 2

cQ Q
 223  - C.4.13 
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